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ABSTRACT

Schenkerian analysis, a kind of hierarchical music anal-
ysis, is widely used by music theorists. Though it is part of
the standard repertoire of analytical techniques, computa-
tional studies of Schenkerian analysis have been hindered
by the lack of available data sets containing both musical
compositions and ground-truth analyses of those composi-
tions. Without such data sets, it is difficult to empirically
study the patterns that arise in analyses or rigorously eval-
uate the performance of intelligent systems for this kind
of analysis. To combat this, we introduce the first pub-
licly available large-scale data set of computer-processable
Schenkerian analyses. We discuss the choice of musical se-
lections in the data set, the encoding of the music and the
corresponding ground-truth analyses, and the possible uses
of these data. As an example of the utility of the data set,
we present an algorithm that transforms the Schenkerian
analyses into hierarchically-organized data structures that
are easily manipulated in software.

1. CORPUS-DRIVEN RESEARCH

Corpus-driven research is now commonplace in the music
informatics community. With the wealth of raw musical
information now available in digital form, in many cases, it
is straightforward to construct and use data sets containing
numerous musical compositions. However, the problem
of collecting ground-truth metadata about the content of
the music still exists, especially where high-level features
are concerned. This is a problem that effects researchers
working with music in audio or symbolic formats.
Ground-truth data sets that include features specifi-
cally relating to music theory or music analysis are par-
ticularly labor-intensive to construct. Information about
the high-level harmonic or melodic structure of composi-
tions is often only found scattered throughout textbooks
or individual research publications, and so there are few
publicly-available corpora containing such information in
a computer-processable format. Some data sets are cre-
ated only for specific research projects and then discarded,
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are not in an easy-to-use format, or are simply never made
widely available.

The lack of varied ground-truth musical metadata relat-
ing to theory and analysis — especially data sets specifi-
cally designed to align with symbolic music data — hin-
ders corpus-driven research studies because time must be
spent collecting data. Sometimes the researchers must per-
form the music analysis themselves, possibly inadvertently
introducing biases into the data. Without widely available
comprehensive data sets, it is extremely difficult to con-
duct large-scale experiments on the structure of musical
compositions in symbolic form, or quantitatively evaluate
the performance of computational systems that emulate a
music analysis process.

There is a particular dearth of empirical data available
in the realm of Schenkerian analysis, a widely used analyt-
ical system that illustrates a hierarchical structure among
the notes of a composition. Though Schenkerian anal-
ysis is one of the most comprehensive methods for mu-
sic analysis that we have available today [1], there are no
large-scale digital repositories of analyses available to re-
searchers. In addition to the reasons stated above for the
lack of corpora, Schenkerian analysis presents a number
of unique challenges to creating a useful data set. First, a
Schenkerian analysis for a composition is illustrated using
the musical score of the composition itself, and commonly
requires multiple staves to show the hierarchical structure
uncovered. This requires substantial space on the printed
page and thus is a deterrent to retaining large sets of analy-
ses. Second, there is no established computer-interpretable
format for Schenkerian analysis storage, and third, even if
there were a format, it would take a great deal of effort
to encode a number of analyses into processable computer
files.

The lack of data has kept the number of computational
studies of Schenkerian analysis requiring ground-truth data
to a bare minimum; some examples include studies using
corpora with six [7] or eight [6] pieces. Though these stud-
ies are useful, the results would likely carry more weight if
the data sets used were larger.

With all of these ideas in mind, in this paper we intro-
duce the first large-scale data set of musical compositions
along with corresponding ground-truth Schenkerian analy-
ses, called SCHENKER41 ! . The 41 musical selections in-
cluded constitute the largest-known corpus of Schenkerian
analyses in a machine-readable format. The musical selec-

! Available at www . cs . rhodes . edu/~kirlinp/schenker4l.



tions are standardized in mode, length, and instrumenta-
tion, and the analyses are stored in a novel text-based rep-
resentation designed to be easily processed by a computer.
We created these data with the hope that they would be
useful to researchers (a) studying the Schenkerian analysis
process itself from a quantitative standpoint (for instance,
detecting patterns in the way analysis is done), (b) need-
ing a data set of analyses for use with supervised machine
learning techniques, and (c) performing any sort of quanti-
tative evaluation requiring ground-truth hierarchical music
analyses.

2. THE DATA SET
2.1 Creation and Content

In order to create a data set of musical compositions
and corresponding ground-truth Schenkerian analyses that
would be useful to researchers with a wide variety of goals,
we restricted ourselves to music from the common prac-
tice period of European art music, and selected 41 excerpts
from works by J. S. Bach, G. F. Handel, Joseph Haydn,
M. Clementi, W. A. Mozart, L. van Beethoven, F. Schu-
bert, and F. Chopin. All of the compositions were either
for a solo keyboard instrument (or arranged for such an in-
strument) or for voice with keyboard accompaniment. All
were in major keys and did not modulate.

The musical excerpts were also selected for the ease of
locating a Schenkerian analysis for each excerpt done by
an outside expert. Analyses for the 41 excerpts chosen
came from four places: Forte and Gilbert’s textbook In-
troduction to Schenkerian Analysis [4] and the correspond-
ing instructor’s manual [3], Cadwallader and Gagné’s text-
book Analysis of Tonal Music [2], Pankhurst’s handbook
SchenkerGUIDE [9], and a professor of music theory who
teaches a Schenkerian analysis class. These four sources
are denoted by the labels F&G, C&G, SG, and Expert in
Table 1, which lists the excerpts in the corpus.

From a Schenkerian standpoint, we also chose excerpts
such that the analyses of the excerpts would all share some
commonalities. All the analyses contained a single linear
progression as the fundamental background structure: ei-
ther an instance of the Ursatz or a rising linear progression.
Some excerpts contained an Ursatz with an interruption: a
Schenkerian construct that occurs when a musical phrase
ends with an incomplete instance of the Ursatz, then re-
peats with a complete version.

We put these restrictions on the musical content in place
because we expected that if SCHENKER41 were to be used
for supervised machine learning, such algorithms would be
able to better model a corpus with less variability among
the pieces.

Overall, SCHENKER41 contains 253 measures of music
and 907 notes. The lengths of individual excerpts ranged
from 6 to 53 notes.

2.2 Encoding

With our selected musical excerpts and our corresponding
analyses in hand, we needed to translate the musical in-

formation into machine-readable form. Musical data has
many established encoding schemes; we used MusicXML,
a format that preserves more information from the original
score than say, MIDI.

Translating the Schenkerian analyses proved harder be-
cause there is no current standard for storing such analy-
ses in a format that a computer could easily process and
manipulate. Therefore, we devised a text-based encoding
scheme to represent the various notations found in a Schen-
kerian analysis. Each analysis is stored in a single text file
that is linked to a specific MusicXML file containing the
musical excerpt being analyzed.

Schenkerian analyses are primarily based on the con-
cept of a prolongation, a situation where an analyst deter-
mines that a group of notes is elaborating a group of more
structurally fundamental notes. Consider the descending
melodic pattern D-C-B-Ff-G all occurring over G major
harmony, as is shown in Figure 1. We could imagine that
an analyst would determine that this passage outlines a de-
scending G-major triad (D-B-G), with the second note C
(a passing tone) serving to melodically connect the preced-
ing D to the following B. We would say the note C prolongs
the motion from D to B. Similarly, the F§ prolongs the mo-
tion from B to G. Schenkerian analysis hypothesizes that
any tonal composition is structured as a nested collection
of prolongations; identifying them is a important compo-
nent of the analysis procedure.

Every prolongation identified in an analysis is encoded
in the analysis text file using the syntax X (Y) Z, where
X and Z are individual notes in the score and Y is a non-
empty list of notes. Such a statement means that the notes
in Y prolong the motion from note X to note Z. Addi-
tionally, we permit incomplete prolongations in the text
file representation: one of X or Z may be omitted. The
notes of X, Y and Z are transcribed in the text file as is
shown in Figure 1, with a measure number, followed by a
pitch and octave, followed by a integer to distinguish be-
tween repeated notes in the same measure. Figure 2 shows
how the prolongations of Figure 1 would be encoded. Note
that the prolongation involving the Ff is encoded with no
X component; this tell us that there is no strong melodic
connection from the B to the Ff, only from the Ff to the G.
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Figure 1. A melodic sequence with note names.

1d5-1 (1c5-1) 1b4-1
(1£f#4-1) 2g4-1
1d5-1 (1b4-1) 2g4-1

Figure 2. An encoding of the prolongations present.

This text format easily supports encoding prolongations
at differing hierarchical levels in the music. We can see



how Figure 2 encodes both the “surface-level” prolonga-
tions D-C-B and F§-G, but also the deeper prolongation
D-B-G which outlines the fifth relationship in the G-major
chord.

Aside from prolongations, the encoding system supports
describing repetitions of notes that may be omitted in the
analysis on the printed page; any linear progressions, in-
cluding instances of the Ursatz; and the harmonic context
present at any point in the analysis.

2.3 Compromises

An additional challenge not previously mentioned in creat-
ing the SCHENKER41 analyses is choosing an appropriate
level of detail of the material to encode. Because the main
objects in analyses are prolongations, it is natural to at-
tempt to group them into categories like “neighbor tone”
and “passing tone.” However, not all prolongations iden-
tified in analyses are easily categorized, and so category
labels are often omitted in analyses not found in an educa-
tional context. This raises the question of whether or not to
attempt to encode the category of prolongations in this cor-
pus. To avoid the risk of incorrectly interpreting analyses,
we have chosen to encode only what is directly observ-
able on the printed page — the hierarchical relationship
between groups of notes — and not categorize the prolon-
gations found in the analyses. We recognize that this is a
compromise between staying true to the data and encoding
all potentially useful information.

3. USAGE OF THE DATA

The SCHENKER41 data set enables the undertaking of a
wide variety of tasks and studies. In addition to the already-
discussed endeavors of using the corpus for supervised ma-
chine learning or for quantitative evaluation, we theorize
that with these data it could be possible to address the fol-
lowing questions:

e Do analysts identify certain types of prolongations
more often than others under certain circumstances?
These circumstances may involve the composer, mu-
sical genre, or even the analysis source.

e Does Schenkerian analysis align well with other
forms of music analysis, such as Narmour’s
implication-realization model of melodic expecta-
tion [8]?

e How well do Schenkerian analyses align with ex-
pressive performances of the music [10]? Do fea-
tures of a performance such as phrasing, volume,
or other quantifiable measures of musicality corre-
spond to various Schenkerian annotations in an anal-
ysis?

Besides answering questions about Schenkerian analy-
sis itself, we hope that that the availability of SCHENKER41
will spur others to study the utility of Schenkerian analy-
sis in other areas of music informatics. For instance, we
suspect hierarchical analyses could prove useful in con-
structing musical similarity metrics, because Schenkerian

analyses may highlight a common melodic pattern residing
under the surface in two different musical excerpts.

Though the SCHENKER41 analyses can be directly pro-
cessed by software, the nature of the flat text file format in
which the data are encoded makes it difficult to see hierar-
chical relationships between notes not directly related by a
single prolongation. Therefore, in this section we describe
an algorithm to translate the analysis text files into hierar-
chical graph structures known as MOPs. It is possible to
use the SCHENKER41 data in MOP form to automatically
learn characteristics of Schenkerian analysis [5].

3.1 Maximal Outerplanar Graphs

Maximal outerplanar graphs, or MOPs, were first proposed
by Yust [11] as elegant structures for representing a set of
musical prolongations in a Schenkerian-style hierarchy. A
MOP represents a hierarchy of melodic intervals located
in a monophonic sequence of notes, though Yust proposed
some extensions for polyphony. For example, the prolon-
gations mentioned in Figures 1 and 2 are represented by
the MOP shown in Figure 3.
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Figure 3. A MOP representation of the music in Figure 1.

Formally, a MOP is a complete triangulation of a poly-
gon, where the vertices of the polygon are notes and the
outer perimeter of the polygon consists of the melodic in-
tervals between consecutive notes of the original music,
except for the edge connecting the first note to the last,
which is called the root edge. Each triangle in the poly-
gon specifies a prolongation. For instance, in Figure 3, the
presence of triangle D—-C-B means that the melodic mo-
tion from D to B is prolonged by the C. By expressing the
hierarchy in this fashion, each edge (z,y) carries the in-
terpretation that notes x and y are “consecutive” at some
level of abstraction of the music. Edges closer to the root
edge express more abstract relationships than edges farther
away.

Outerplanarity is a property of a graph that can be drawn
such that all the vertices are on the perimeter of the graph.
Such a condition is necessary for us to enforce the strict hi-
erarchy among the prolongations. A maximal outerplanar
graph cannot have any additional edges added to it with-
out destroying the outerplanarity; such graphs are neces-
sarily polygon triangulations, and under this interpretation,
all prolongations must occur over triples of notes.

There are three representational issues with MOPs we
must address before discussing the algorithm to convert an
analysis text file into MOPs. First, Schenkerian analyses
as commonly encountered often include prolongations in-
volving more than three notes. The analysis sources used
in SCHENKER41 are no exception. For this reason, we re-
lax the “maximal” qualifier for MOPs and permit prolon-
gations involving any number of notes in our MOP repre-
sentation. A prolongation involving more than three notes



will be translated into a polygon with more than three edges
in the MOP representation.

Second, MOPs do not have a direct way to represent
a prolongation with only a single “parent” note. Because
MOPs model prolongations as a way of moving from one
musical event fo another event, every prolongation must
have two parent notes. Music sometimes presents situa-
tions, however, that an analyst would model with a one-
parent prolongation, such as an incomplete neighbor tone
(we encountered this situation in Figure 2). Yust interprets
such prolongations as having a “missing” origin or goal
note that has been elided with a nearby structural note,
which substitutes in the MOP for the missing note.

The third representational issue stems from trying to
represent prolongations involving the first or last note in
the music. Prolongations necessarily take place over time,
and in a MOP, we interpret the temporally middle notes
as prolonging the motion from the earliest note (the left
parent) to the latest (the right parent). Following this tem-
poral logic, we can infer that the root edge of a MOP must
therefore necessarily be between the first note of the music
and the last, implying these are the two most structurally
important notes of a composition. As this is not always
true in compositions, we add two pseudo-events to every
MOP: an initiation event that is located temporally before
the first note of the music, and a termination event, which
is temporally positioned after the last note. The root edge
of a MOP is fixed to always connect the initiation event
and the termination event. These extra events allow for
any melodic interval — and therefore any pair of notes in
the music — to be represented as the most structural event
in the composition. For instance, in Figure 4, which shows
the D-C-B-F{—G pattern with initiation and termination
events (labeled START and FINISH), the analyst has indi-
cated that the G is the most structurally significant note in
the passage, as this note prolongs the motion along the root
edge.
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Figure 4. A MOP containing initiation and termination
events.

3.2 Converting the Corpus to MOPs

We now present an algorithm to convert a text file anal-
ysis like those in SCHENKER41 to a collection of MOPs.
Because a single MOP only represents a monophonic se-
quence of notes, we may need multiple MOPs to store all
of the prolongations in a single text file analysis. Most of
the analyses in SCHENKER41 contain at least two MOPs,
one representing the structure of the main melody, and one
representing structure of the bass line.

The algorithm operates in three phases. In the first phase,
we make a pass through the analysis text file to identify
which notes will belong to which MOPs. We do this by
creating a temporary graph structure consisting of all the

notes present in the analysis and initially no edges. For
each prolongation in the analysis file X (Y) Z, we add the
edges (X, Z) and (i, Z) for each note ¢ in the set of notes
Y. After processing every prolongation, every connected
component in the graph will correspond to a single MOP.
Phase two adds edges to the MOP for all two-parent
prolongations. For each MOP graph identified in phase
one, we first remove all the edges, then create a “skeleton”
MOP structure consisting of edges connecting only con-
secutive notes in the music, plus the additional edges in-
volving the START and FINISH vertices. Figure 5(a) illus-
trates this skeletal structure for the prolongations described
in Figure 2. We then create edges in the MOP correspond-
ing to all prolongations in the analysis text file that have
two parent notes. Adding appropriate edges is straightfor-
ward: for a prolongation X (Y') Z, we add an edge from
note X to the first note of the set of notes Y, an edge from
the last note of Y to note Z, and an edge from X to Z.
If the consecutive notes of Y are not already connected to
each other by edges, we also add such edges. At the end of
phase two, we would have a structure like in Figure 5(b).
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Figure 5. The (a) beginning and (b) end of phase two of
creating a MOP.

Phase three involves adding edges in the MOP for one-
parent prolongations, i.e., prolongations in the analysis text
file of the form X (Y) or (Y) Z. We begin by adding
edges between consecutive notes of Y as in phase two.
The next step is identifying any additional edges neces-
sary to enforce that the notes of Y should be lower in the
hierarchy than X or Z, whichever parent note is present.
Fortunately, it is guaranteed that every one-parent prolon-
gation will fall into one of the six categories described be-
low, each of which we handle separately. We briefly de-
scribe the six categories here, and their processing steps
are fully described in the pseudocode of Algorithm 1. The
code refers to the “smallest interior polygon” for a one-
parent prolongation p, which is the smallest polygon in the
MOP containing all the notes of p (the parent note and all
of the child notes). This interior polygon will always exist
in a MOP because MOPs express a strict hierarchy among
the notes, and therefore all the notes of a prolongation will
be found within a single polygon.

Category 1 corresponds to a one-parent prolongation
missing a right parent, where the MOP already contains
an edge connecting the left parent X to the first note of
Y, and the edge in question already implies a hierarchical
relationship between X and Y. In this situation, there are
no extra edges to add because the necessary hierarchical
relationship already exists. Category 2 corresponds to the
same situation as Category 1, but reversed for a missing



Algorithm 1

1: procedure PROCESS-ONE-PARENT-PROLONGATIONS

Let S be the set of one-parent prolongations.
while S # () do
p < shortest length prolongation in S

Assume vertices of I are numbered 0...m — 1

2
3
4:
5: I <+ identify smallest interior polygon containing all notes of p
6.
7 if leftParent(p) = I[0] and firstChildNote(p) = I[1] then
8

S+ S—{p}

> Category 1

: > No additional edges needed; p’s children are already lower in the hierarchy
9: else if rightParent(p) = I[m — 1] and lastChildNote(p) = I[m — 2| then

> Category 2

10: S+ S—{p} > No additional edges needed; p’s children are already lower in the hierarchy
11: else if leftParent(p) = I[0] then > Category 3
12: Add edge (leftParent(p), firstChildNote(p)) to MOP; S < S — {p}

13: else if rightParent(p) = I[m — 1] then > Category 4
14: Add edge (rightParent(p), lastChildNote(p)) to MOP; S < S — {p}

15: else if rightParent(p) is missing then > Category 5
16: newRight < earliest I[x] such that I[z] is later than all of p’s children

17: if choice of newRight increases length of prolongation p then

18: Update p’s length in .S; defer processing

19: else

20: Add edge (leftParent(p), newRight) to MOP; S + S — {p}

21: else if leftParent(p) is missing then > Category 6
22: newLeft — latest /[z] such that I[z] is earlier than all of p’s children

23: if choice of newLeft increases length of prolongation then

24: Update p’s length in S; defer processing

25: else

26: Add edge (newLeft, rightParent(p)) to MOP; S + S — {p}

left parent note.

Category 3 corresponds to a one-parent prolongation
missing a right parent, where the the MOP does not con-
tain an edge connecting the left parent X to the first note
of Y, but other nearby edges already imply a hierarchical
relationship between X and Y. Here, we only need to add
an edge from X to the first child note of Y. Category 4 cor-
responds to the same situation as Category 3, but reversed
for a missing left parent.

Category 5 corresponds to a one-parent prolongation
missing a right parent, where the the MOP does not con-
tain an edge connecting the left parent X to the first note
of Y, and no other edges in the MOP already imply a hi-
erarchical relationship between X and Y. In this situation
we must explicitly find a suitable right parent note, which
we choose to be the temporally earliest note on the interior
polygon that is later than all the notes of Y. Category 6 cor-
responds to the same situation as Category 5, but reversed
for a missing left parent.

4. CONCLUSIONS

In this paper, we presented SCHENKER41, the first large-
scale data set of musical compositions and corresponding
Schenkerian analyses in a computer-processable format.
We anticipate that with the rise of corpus-driven research
in music informatics, this data set will be of value to re-
searchers investigating various characteristics of Schenker-
ian analysis, using machine learning techniques to study
the analytical procedure, or harnessing the analyses for use
in other music informatics tasks. We also presented an
algorithm for translating the analyses into MOPs, which
serve as useful data structures for representing the hierar-
chical organization of the analyses.
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Composer  Excerpt name Analysis source

Bach Minuet in G major, BWV Anh. 114, mm. 1-16 Expert
Bach Chorale 233, Werde munter, mein Gemute, mm. 14 Expert
Bach Chorale 317 (BWYV 156), Herr, wie du willt, so schicks mit mir, mm. 1-5 F&G manual
Beethoven Seven Variations on a Theme by P. Winter, WoO 75,

Variation 1, mm.1-8 C&G
Beethoven Seven Variations on a Theme by P. Winter, WoO 75,

Theme, mm. 1-8 C&G
Beethoven  Ninth Symphony, Ode to Joy theme from finale (8 measures) SG
Beethoven Piano Sonata in F minor, Op. 2, No. 1, Trio, mm. 1-4 SG
Beethoven Seven Variations on God Save the King, Theme, mm. 1-6 SG
Chopin Mazurka, Op. 17, No. 1, mm. 14 SG
Chopin Grande Valse Brilliante, Op. 18, mm. 5-12 SG
Clementi Sonatina for Piano, Op. 38, No. 1, mm. 1-2 SG
Handel Trio Sonata in B-flat major, Gavotte, mm. 1-4 Expert
Haydn Divertimento in B-flat major, Hob. 11/46, II, mm. 1-8 F&G
Haydn Piano Sonata in C major, Hob. XVI/35, I, mm. 1-8 F&G
Haydn Twelve Minuets, Hob. IX/11, Minuet No. 3, mm. 1-8 SG
Haydn Piano Sonata in G major, Hob. XVI/39, I, mm. 1-2 SG
Haydn Hob. XVI1/3, Variation I, mm. 19-20 SG
Haydn Hob. 1/85, Trio, mm. 39-42 SG
Haydn Hob. 1I/85, Menuetto, mm. 1-8 SG
Mozart Piano Sonata 11 in A major, K. 331, I, mm. 1-8 F&G
Mozart Piano Sonata 13 in B-flat major, K. 333, III, mm. 1-8 F&G manual
Mozart Piano Sonata 16 in C major, K. 545, III, mm. 1-8 F&G manual
Mozart Six Variations on an Allegretto, K. Anh. 137, mm. 1-8 F&G manual
Mozart Piano Sonata 7 in C major, K. 309, I, mm. 1-8 C&G
Mozart Piano Sonata 13 in B-flat major, K. 333, I, mm. 14 F&G
Mozart 7 Variations in D major on “Willem van Nassau,” K. 25,

mm. 1-6 SG
Mozart Twelve Variations on “Ah vous dirai-je, Maman,” K. 265,

Var. 1, mm. 23-32 SG, C&G
Mozart 12 Variations in E-flat major on “La belle Francoise,” K. 353,

Theme, mm. 1-3 SG
Mozart Minuet in F for Keyboard, K. 5, mm. 14 SG
Mozart 8 Minuets, K. 315, No. 1, Trio, mm. 1-8 SG
Mozart 12 Minuets, K. 103, No. 4, Trio, mm. 15-16 SG
Mozart 12 Minuets, K. 103, No. 3, Trio mm. 7-8, SG
Mozart Untitled from the London Sketchbook, K. 15a, No. 1, mm. 12-14 SG
Mozart 9 Variations in C major on “Lison dormait,” K. 264,

Theme, mm. 5-8 SG
Mozart 12 Minuets, K. 103, No. 12, Trio, mm. 13-16 SG
Mozart 12 Minuets, K. 103, No. 1, Trio, mm. 1-8 SG
Mozart Piece in F for Keyboard, K. 33B, mm. 7-12 SG
Schubert Impromptu in B-flat major, Op. 142, No. 3, mm. 1-8 F&G manual
Schubert Impromptu in G-flat major, Op. 90, No. 3, mm. 1-8 F&G manual
Schubert Impromptu in A-flat major, Op. 142, No. 2, mm. 1-8 C&G
Schubert Wanderer’s Nachtlied, Op. 4, No. 3, mm. 1-3 SG

Table 1. The musical excerpts contained in SCHENKER4 1.



