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ABSTRACT

In this paper, we build on and extend a number of previous
studies of rhythmic patterns that occur in ragtime music.
All of these studies have used the RAG-C dataset of ap-
proximately 11,000 symbolically-encoded ragtime pieces
to identify salient rhythmic patterns in the corpus and qual-
ify how they are used. Ragtime music is distinguished
from other musical genres by frequent use of syncopation,
and previous computational studies have confirmed a num-
ber of musicological hypotheses regarding the use of syn-
copated patterns in ragtime compositions. In this work, we
extend these studies to investigate further questions involv-
ing the use of syncopation. Specifically, we introduce a
new methodological framework for processing the RAG-C
dataset and confirm that experiments from previous stud-
ies obtain similar results using the new methodology. We
investigate the use of the common “short-long-short” syn-
copated pattern in different time periods and present new
results detailing its use by three well-known ragtime com-
posers. We describe how the use of other syncopated
patterns has evolved over time and the different distribu-
tions of patterns that result from those changes. Lastly,
we present novel results identifying statistically significant
patterns in the way composers varied the amount of synco-
pation in consecutive measures in compositions.

1. INTRODUCTION

In this work, we present an analysis of the salient rhyth-
mic patterns that occur in ragtime piano music and quan-
tify how the use of these patterns has changed over time
and varies between composers. In particular, we illustrate
that the specific sequences of syncopated patterns found in
ragtime music and the ways in which they are ordered are
not due to chance, but due to deliberate choices made by
the composers. We argue that understanding and quanti-
fying the musical choices made by composers is crucial to
creating and improving the performance of various music
information algorithms, including those for genre classifi-
cation and algorithmic composition.

Recently, a number of corpus-based studies of ragtime
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music have been published [1–4] that use a dataset known
as the RAG-collection (RAG-C), a corpus of over 11,000
MIDI files first introduced by Volk and De Haas [1]. This
dataset presents particular challenges to use due to its het-
erogeneous nature: it contains compositions from a wide
variety of eras and composers, includes numerous ragtime
styles (some of which could be argued are not ragtime at
all), and has no standard method for encoding the music
in MIDI format: some files are derived from live perfor-
mances, while others are sequenced from sheet music.

Previous studies using the RAG-C corpus have iden-
tified the common usage of certain rhythmic patterns in
ragtime, but have varied in their techniques in processing
the corpus and interpreting the rhythmic patterns located.
We present a new methodology for analyzing the corpus
while taking care to confirm that our results align with
previously-published studies.

Our contributions are as follows. First, we illustrate
the feasibility of using automated algorithmic techniques
to extract rhythmic patterns from a collection of MIDI
files. We also argue for why our particular techniques work
given the heterogeneous nature of the RAG-C dataset, es-
pecially involving the different time signatures present in
the collection. Second, we extend previous corpus-based
studies of ragtime music to illustrate the importance of spe-
cific kinds of syncopated patterns across the entire corpus,
and also in subsets segmented by era and by composer.
Since our methodological techniques are slightly different
from those used in previous work, we confirm a number
of earlier results and then extend them with new experi-
ments and findings. Third, we show that additional pat-
terns emerge when we study the way composers choose to
order the amount of syncopation in successive measures:
we statistically illustrate that this is done in a particular,
deliberate manner. All the code for the experiments de-
scribed here is publicly available. 1

2. RAGTIME AND SYNCOPATION

In music, syncopation occurs when notes that a listener
would expect to occur on strong beats in a measure are
shifted to weak beats. Syncopation is particularly identi-
fied with ragtime music; while various definitions of rag-
time exist, the unifying characteristic is the presence of
certain varieties of syncopated rhythms [5]. Though in the
modern era ragtime is often thought of as a form of music

1 https://github.com/pkirlin/ragtime-ismir-2020
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Figure 1. Different versions of the 121 pattern. Variations
(a) and (b) are untied; (c) and (d) are tied.

restricted to the piano, during ragtime’s heyday of roughly
1890–1920, this style of music was composed for all kinds
of instrumental ensembles as well as in song form [6]. Af-
ter 1920, ragtime fell out of compositional favor, though
one can still find many rags composed during the modern
era.

As syncopation is the defining characteristic of ragtime,
it is natural to study how the use of syncopated patterns has
changed over time. Ragtime scholars argue that a number
of specific syncopated rhythmic patterns that composers
gravitated towards changed in their frequency of use dur-
ing the original ragtime era, with particularly drastic shifts
occurring around the turn of the century. In particular,
musicologists often focus on the importance of the “short-
long-short” or “121” pattern. This pattern occurs with var-
ious note durations, but is usually found in the form ˇ “( ˇ “ ˇ “(
in 4

4 or 2
2 time signatures and ˇ “===̌ “ ˇ “=== in 2

4. It may occur at var-
ious locations within the measure; musicologists focus on
how its position within the bar changed as ragtime evolved
over time. In an untied syncopation, the pattern starts on
either the metrical downbeat or halfway through a mea-
sure, therefore occurring entirely in the first or second half
of a measure, as in Figure 1(a) and (b). In a tied syncopa-
tion, the pattern begins either one-quarter or three-quarters
of the way through a measure, and therefore either crosses
the midpoint of a measure or extends into the following
measure, leading to a tie displayed in the notation, as in
Figure 1(c) and (d). Music historians and previous stud-
ies of ragtime have noted that the untied syncopation was
more typical of the early ragtime period of approximately
1890–1901, while the tied syncopation picked up in popu-
larity after the turn of the century [5–7].

3. METHODOLOGY

Our methodology is similar to that used in previous stud-
ies, but different enough to warrant some explanation and
confirmation that our results align with those of previous
work. We begin by preprocessing the RAG-C dataset, with
our goal being to identify a set of ragtime pieces sharing a
set of basic, consistent properties. We do this by using an
established MIR toolkit to identify the time signature and
number of parts in each composition. We then use a nota-
tion program to automatically quantize the MIDI files and
separate the melody from the accompaniment. Because
MIDI files do not consistently represent pickup measures
(anacruses, or fractional measures at the beginning of a
composition), we conduct an experiment to illustrate that
they are correctly identified in the dataset. We conclude
the preprocessing stage with matching the MIDI files with
entries in the RAG-C compendium, which provides useful

metadata for each composition, and extracting the rhythms
of all the melodic voices.

The RAG-C Dataset. The RAG-C dataset is a corpus
of approximately 11,000 ragtime compositions in MIDI
format, compiled over time by many enthusiasts of the rag-
time genre. In addition to the compositions, the dataset in-
cludes a compendium spreadsheet providing metadata for
each piece, including title, composer, year (or approximate
year) of composition or publication, subgenre within rag-
time such as march or two-step, and information about the
source of the MIDI file such as the person who played the
recording or sequenced the sheet music.

The MIDI file format, having been designed to support
communication between electronic music devices, only
contains low-level information about the timing of notes
in a composition, and therefore MIDI files are more akin
to transcriptions of a piece of music rather than a perfect
representation of a printed score. A MIDI file is organized
into tracks, with each track containing a sequence of events
specifying when certain notes should be played. Each track
also specifies the musical instrument that should play the
notes in that track. While it is possible to specify higher-
level information such as time or key signatures in a MIDI
file, they are not required and are often omitted. Therefore,
it is a non-trivial task to extract music-theoretic features
from such files [8], especially metrical information. Notes
in a MIDI file are only specified as starting and ending at
a timestamp given in “ticks” measured from the beginning
of the file. It is easiest to infer note durations when a time
signature is present in the file and the file is created from a
software sequencer, which will ensure that the notes within
a MIDI file correspond to a logical metrical grid. When
MIDI files are derived from human performances, how-
ever, notes which occur simultaneously on the printed page
may not match up exactly in terms of ticks due to natural
timing variances in performance. Quantization, the pro-
cess of aligning the notes within a MIDI file to a metrical
grid, must therefore occur to derive metrical information
in such cases.

Melody and Accompaniment Extraction. To address
these issues with the RAG-C dataset, we first decided to
study only ragtime pieces for solo piano, a decision made
in a number of previous studies using the dataset. Within
the ragtime piano repertoire, it is common for most of the
syncopated action to occur in the right-hand melody part,
while the left-hand plays a steady accompaniment. There-
fore, isolating the right-hand melody is a clear prerequisite
for investigating the syncopated rhythms of ragtime. To
accomplish this, we used the pretty_midi library [9]
to identify MIDI files from the dataset containing exactly
two piano tracks in the file. Normally such files contain
the melody in one track and the accompaniment in the
other; we verified this by calculating the average pitch of
the notes in each track and comparing them. The track with
the higher average pitch was labeled as the melody, and the
other as the accompaniment. To account for files having
two piano tracks due to other circumstances (such as two
different compositions in one file or a single piano track
duplicated twice), we hand-examined all MIDI files where



the difference in the average pitches of the two tracks was
smaller than one octave to ensure the melody identification
algorithm functioned correctly. Furthermore, at this point
we ensured that all files remaining had time signatures of
either 2

4, 4
4, or 2

2. While ragtime is occasionally found in
other time signatures, the vast majority of ragtime music
occurs in these meters.

Quantization. Quantizing a MIDI file means aligning
the notes in the file to a metrical grid in order to assign nat-
ural note durations to each note. To quantize our data, we
ran each two-piano-track MIDI file through the MuseScore
music notation program [10] and converted each file to its
MusicXML representation. MusicXML is a richer format
than MIDI that supports more features of common music
notation; we use it here specifically so MuseScore can de-
duce standard note durations and measure boundaries for
the MIDI files. We analyzed the resulting MusicXML out-
put files using the music21 library [11] and discarded any
files for which more than 5% of the note onsets in the piece
did not align with a 16th note grid. Most ragtime composi-
tions rarely go beyond the 16th note level; we determined
that any file with an overabundance of 32nd notes or notes
at other onsets in the metrical grid probably was quantized
incorrectly.

Title Matching. After all previous steps were com-
pleted, we were left with 1991 MIDI files. However, some
of these files corresponded to the same ragtime composi-
tion, but encoded by different contributors to the RAG-C
dataset. To ensure we only had one instance of each com-
position in our analyses, we used the Levenshtein edit dis-
tance to compare each MIDI filename — usually a com-
bination of the composition title and MIDI encoder —
against the catalog of composition titles in the RAG-C
metadata spreadsheet. Any situation where a filename
matched more than title with an edit distance of 5 or less
triggered an inspection by hand to assign the proper title.
If two or more files matched with a single composition, we
kept only the file with the highest quantization percentage;
that is, the version with the highest percentage of notes that
matched perfectly to the quantization metrical grid. This
left us with a final total of 1058 MIDI files in our corpus,
each one corresponding to a unique composition.

Accounting for Pickup Measures. Because of the lack
of sophisticated metrical information in MIDI files, incon-
sistencies may arise when processing MIDI files derived
from compositions containing a pickup measure, that is, an
incomplete measure at the beginning of the music. Such
music requires special handling as MIDI files do not ex-
plicitly store the locations of measure boundaries, and soft-
ware that assumes such boundaries occur at regular inter-
vals throughout the file will likely incorrectly process a
MIDI file containing an incomplete measure. Because we
will be investigating syncopation at different points within
a measure, it is important that we correctly identify the
measure boundaries in such cases.

A common convention is to “pad” a pickup measure
with silence at the beginning of a MIDI file, thereby length-
ening the first incomplete measure into a complete one.
Sometimes this convention is extended to MIDI files that

do not have a pickup measure: such files begin with a com-
plete measure of silence. Since any file with silence at the
beginning clearly has been padded, we are left with what
to do with any unpadded files — we made the decision to
treat these files as having full measures throughout, with-
out a pickup measure.

We justify this decision with the following experiment.
We identified one particular contributor to the RAG-C
dataset who chose to always encode MIDI files with si-
lence at the beginning: a padded partial measure of silence
for compositions beginning with a pickup, or a complete
measure of silence for compositions without a pickup. This
individual encoded 104 compositions in the dataset, and 26
of them began with a partial measure of silence, versus 78
with a complete measure of silence. Because 25% of this
particular contributor’s files begin with a pickup measure,
we would expect that this proportion would hold in the re-
mainder of the corpus as well. Of the 1,991 MIDI files
remaining after the quantization step, 1887 of them do not
come from the contributor in question. Of the 1887, 539
begin with a fractional measure of silence and 1348 begin
with a complete measure of silence or no silence. Because
539 out of 1887 is approximately 28.6%, it is reasonable
to assume that the files with no silence at the beginning
correspond to compositions with no pickup measure.

Binary Onset Patterns. The last remaining step in pre-
processing the RAG-C dataset is to identify the rhythms of
the melody part. Previous studies of ragtime syncopation
used the convention of binary onset patterns to represent
rhythms. These patterns are sequences of ones and zeros
where a one represents the onset of a note and a zero rep-
resents a continuation of a note or a rest. These patterns
can be computed at different levels of metrical granularity
from a score. For instance, the binary onset pattern for a 2

4

measure of four eighth notes would be “10101010” com-
puted at the 16th-note level, but “1111” computed at the
eighth note level.

Our dataset contains ragtime compositions in three dif-
ferent time signatures, namely 2

4 (810 pieces), 4
4 (214

pieces), and 2
2 (34 pieces). We chose to compute binary

onset patterns at the sixteenth note granularity for 2
4 compo-

sitions, and at the eighth note granularity for 4
4 and 2

2 pieces.
The basis for this decision was the observation that the use
of sixteenth notes differed between pieces notated in the
three time signatures, verified by the following experiment.
We define the sixteenth note density for a measure of mu-
sic as the proportion of the weak sixteenth note beats in
a measure (that is, onsets 2, 4, 6, and 8 in 2

4) that contain
at least one note onset. We define the eighth note density
for a measure similarly. We then computed the distribution
of densities of sixteenth notes in all three time signatures,
and eighth note densities in 4

4 and 2
2. We observed that our

initial choices of appropriate granularities for binary onset
patterns — corresponding to the first three plots in Figure
2 — fall in similar ranges, while the last two plots do not,
justifying our mixed use of sixteenth and eighth note bi-
nary onset patterns. However, Figure 2 does show a num-
ber of outliers in the 4

4 and 2
2 sixteenth note density plots,

falling more in the range of the first three plots, indicating
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Figure 2. Box plots illustrating the distribution of 8th and
16th note densities in the various time signatures.

that in future experiments, we should consider analyzing
those particular pieces at the sixteenth note level.

4. EXPERIMENTS

In this section we describe a number of analytical experi-
ments we conducted to extract information from our cor-
pus about the way syncopation is used in ragtime music.

4.1 Exploring the 121 Pattern

Ragtime scholars hypothesized untied syncopations were
the predominant form of syncopated pattern found in early
ragtime compositions from approximately 1890 to the turn
of the century, while tied syncopations did not become
common until around 1902 in the late ragtime period [6,7].
This hypothesis was confirmed by Volk and De Haas [1];
we replicate their experiment due to differing methodolo-
gies for processing the RAG-C dataset. These differences
in selecting and quantizing MIDI files naturally produce a
slightly different corpus with which we are working, and
therefore replicating earlier work shows that these results
are invariant with a well-rounded corpus and lends cre-
dence to our extended results that build on earlier studies.

In this experiment, we compared the frequency of use
of the 121 tied and untied patterns in ragtime compositions
from three eras: first, we compared the early ragtime pe-
riod of 1890–1901 (110 pieces) with the late ragtime pe-
riod of 1902–1919 (582 pieces), and then compared the
entire ragtime period of 1890–1919 (692 pieces) with the
modern period of 1920 to the present (362 pieces). The
121 patterns were found by looking at the binary onset pat-
terns that were collected earlier and counting the number of
times each variety of syncopation appeared in a composi-
tion. It is possible for multiple 121 syncopations to appear
in a single measure, as each syncopation covers only part
of a measure. To account for differing lengths of pieces,
we divided the total tallies by the number of measures in
each composition, resulting in frequency per measure.

Overall, these results are similar to those of Volk and
De Haas, taking into account some variation for differing
pieces selected from the RAG-C dataset. In particular, we
confirm that the number of tied patterns doubled between
the early and late ragtime eras, and the number of untied
patterns decreased between the eras as well. The left two
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Figure 3. Box plots illustrating the distribution of frequen-
cies of 121 patterns per measure, comparing different eras
of ragtime. Means (µ) are shown below each plot.

plots in Figure 3 illustrate this. Wilcoxon rank-sum tests
confirm (untied: p < 0.001, tied: p � 0.001) that the dif-
ferences between the eras are statistically significant given
the null hypothesis that the distributions are identical.

The right two plots in Figure 3 can be analyzed in a
similar fashion, and illustrate that the use of both types
of syncopation climbed after the end of the ragtime era.
Wilcoxon rank-sum tests again confirm (untied: p �
0.001, tied: p � 0.001) that these increases are statisti-
cally significant.

The Big Three. Ragtime scholars agree that three rag-
time composers stand out from the rest in terms of best ex-
emplifying the ragtime genre: Scott Joplin (1867 or 1868–
1917), James Scott (1885–1938), and Joseph Lamb (1887–
1960) [12–14]. These composers are well-represented in
the RAG-C dataset, and it is instructive to examine if they
used syncopation patterns differently than each other or
compared to other ragtime composers.

When comparing the big three among themselves, small
differences in usage of the 121 pattern emerge but noth-
ing that cannot be attributed to chance. However, statis-
tically significant differences are evident when comparing
the output of the big three against other ragtime composers.
In particular, even when controlling for era, the big three
composers used more 121 patterns than other composers.
In this experiment, we isolated the output of the big three
composers during the late ragtime era of 1902–1919 (70
pieces), and compared their compositions against those of
the remaining composers from the same era (512 pieces).
Wilcoxon rank-sum tests confirm that the differences in the
frequency of use of both untied (p < 0.0001) and tied
(p < 0.0001) syncopations are different between the big
three and the remaining composers. Figure 4 illustrates
how the big three used, on average, almost 70% more un-
tied 121 syncopations and almost 50% more tied 121 syn-
copations.

4.2 Analyzing other syncopated patterns

Analyzing frequencies of the 121 pattern is instructive to
verify certain hypotheses put forth by musicologists. How-
ever, it is not a given that this pattern or its variants are nec-
essarily the most prevalent patterns found in ragtime. In
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Figure 4. Box plots illustrating the distribution of frequen-
cies of 121 patterns per measure, comparing compositions
by the “big three” ragtime composers in the late ragtime
era versus all other compositions from that same era.

this section, we expand our analysis to explore all possible
binary onset patterns and measure the amount of syncopa-
tion present in each pattern.

We follow the model of Koops, et. al. [2] and use the
Longuet-Higgins and Lee [15] metric, grounded in aural
perception of rhythm [16], to quantify the amount of syn-
copation present in a measure based on its binary onset
pattern. The LHL metric is zero for a measure with no
syncopation and increases with each instance of a note on-
set (1) occurring on a weak beat followed by no onset (0)
on the immediately-following (strong) beat. The increases
are larger for syncopations crossing more significant divi-
sions of the measure. For example, the binary onset pattern
01010101 contains three syncopations (instances of 10).
The syncopation in the middle that crosses the midpoint
of the measure has an LHL value of 2, and the two syn-
copations on either side have values of 1 since they cross
weaker divisions of the measure. Therefore, this measure
by itself has an LHL score of 4. If this measure were fol-
lowed by no onsets on the downbeat of the next measure,
the LHL value would increase by 3 for the additional syn-
copation crossing the barline, for a total LHL value of 7.

In performing the following experiments, we calculated
the LHL values for each measure of the melody in the cor-
pus using the binary onset patterns computed earlier. Our
corpus of 1,058 pieces contained 140,856 measures of mu-
sic, with the average LHL value for a measure being 1.17,
with a standard deviation of 1.35. However, only 77,012
of the measures (≈ 55%) contained any syncopation at all
(LHL > 0). If we only consider measures with LHL > 0,
the average LHL value becomes 2.14, with a standard de-
viation of 1.12.

We note that our methodology for computing and in-
terpreting binary onset patterns differs enough here from
Koops, et. al. [2] to warrant explanation. In their work,
binary onset patterns may be up to 16 bits in length, cor-
responding to measures in 4

4 or 2
2 analyzed at the 16th note

level, allowing for the possibility of having LHL values for
a single measure of music as high as 15. Here, all our bi-
nary onset patterns are of length 8, due to always analyzing
measures in 4

4 or 2
2 at the eighth note level and measures in

2
4 at the 16th note level. Therefore, it is difficult to draw
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Figure 5. Left: The ten most frequent binary onset pat-
terns overall, differentiating between unsyncopated pat-
terns (LHL > 0) and syncopated patterns (LHL > 0). Right:
Then ten most frequent syncopated patterns.

direct numerical equivalences between our studies.
Overall patterns. We first examine the frequencies of

all possible binary onset patterns in the corpus. To ensure
that the varying lengths of the compositions in the corpus
did not affect our results, we divided the number of times
each binary onset pattern appeared in a composition by the
number of measures in that composition, thereby obtain-
ing the frequency per measure for each pattern. We then
averaged the frequencies across all pieces in the corpus.
The top ten patterns overall, and the top ten with an LHL
score greater than 0 are shown in Figure 5. It is noteworthy
that for a genre identified with such high levels of synco-
pation, there are many common non-syncopated patterns.
In particular, patterns 1, 4, 5, 6, and 10 do not contain any
syncopation.

In analyzing the right side of Figure 5, we note the pres-
ence of a tied 121 pattern (1101) in the middle of patterns
1, 2, 4, and 5, along with untied 121 patterns at the be-
ginning of patterns 6, 7, and 9, and at the end of pattern
10. Additionally, pattern 3 is the 121 pattern in augmented
form. Only pattern 8 is not connected with the 121 figure.

Patterns by era. We conducted an experiment to de-
termine whether composers of different eras used certain
types of binary onset patterns differently. Using our ear-
lier grouping of compositions into the early ragtime era,
the late ragtime era, and the modern era, we computed the
most popular rhythms in each group, which can be seen
in Figure 6; we note that popular patterns in some eras be-
come unpopular in others. We used three Wilcoxon signed-
rank tests to compare pairs of eras, using all 256 possi-
ble binary onset patterns in each test. The results give us
weak statistical significance at the α = 0.05 level using
the Šidák correction to account for the multiple compar-
isons, suggesting that composers chose rhythmic patterns
differently in the three eras (p ≈ 0.01 for the early versus
late eras, p < 0.001 for the early versus modern eras, and
p ≈ 0.01 for the late versus modern eras).

4.3 Transitions Between Patterns

The overall sound of a piece of music depends not only on
the contents of the individual measures of music but also
on the choice of which measures follow other measures.
Ragtime is no exception, and we hypothesize that there are
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ing of the nine possible LHL transition pairs. (b) The devi-
ation from the expected probability if there were no corre-
lation between the LHL value in one measure and the next.
The four highlighted deviations in (b) are statistically sig-
nificant.

relationships between the syncopated patterns in consec-
utive measures. Specifically, we propose the question of
whether the degree of syncopation in a measure of music
is related to the degree of syncopation in the surrounding
measures.

We chose to answer this question by examining all con-
secutive pairs of measures of music in the corpus and com-
puting their LHL values separately for the first measure
and the second measure of the pair. Recalling that the av-
erage LHL value for a syncopated measure of music was
approximately 2.14, we binned the LHL values according
to having a high amount of syncopation (LHL ≥ 3), a low
amount of syncopation (LHL = 1 or 2), or no syncopation
(LHL = 0). For each piece of music, we computed the fre-
quencies of each of the nine possible LHL transition pairs,
normalizing for the number of measures in each composi-
tion, and averaged the frequencies across all compositions.
The results are displayed as joint probabilities in a heatmap
in Figure 7(a). We observe that transitions between con-
secutive measures with no syncopation are extremely com-
mon, while any transition involving a high amount of syn-
copation is uncommon.

These joint probabilities, however, do not tell the whole
story. Because the distribution of LHL values is highly
skewed towards the smaller values, it is worthwhile to test
if any of these LHL transition pairs occur with certain ten-
dencies due to chance, or due to deliberate choices on the
composer’s part. For example, given that almost half of

the measures of music in the corpus do not contain any
syncopation, should we be surprised that 24% of the to-
tal transitions are between two measures without synco-
pation? We can answer this question with a final exper-
iment. We compared the LHL transition frequencies ob-
tained from the corpus against corresponding frequencies
that would be obtained if one were to randomly reorder
the measures in each piece of music. Specifically, for each
composition, we generated 1000 random reorderings of the
measures, computed the LHL transitions for every pair of
consecutive measures, averaged them across the 1000 re-
orderings, and then proceeded as we did earlier with nor-
malizing and averaging across all compositions. These re-
sults, illustrated in Figure 7(b), confirm that a number of
the LHL transitions occur significantly more or less fre-
quently than would be expected under a reordering of mea-
sures of the compositions.

We used nine individual binomial tests to compare the
the true LHL transition frequencies to the expected fre-
quencies under the null hypothesis that measure transitions
resemble those done randomly. At a significance level of
α = 0.05, taking into account the Šidák correction for mul-
tiple comparisons, the four highlighted transitions in Fig-
ure 7(b) are statistically significant (all with p � 0.0001).
This tells us, for instance, that even though it is overall rare
to find consecutive measures with high amounts of synco-
pation in a composition, this phenomenon still occurs more
often than would be expected if a composer were introduc-
ing syncopation at random.

5. CONCLUSION AND FUTURE WORK

In this study, we used new methods to extend a number
of previous analyses of ragtime syncopation to confirm
existing musicological hypotheses and present new ones.
Specifically, we confirmed the earlier finding that the 121
syncopation idiom varies in use between ragtime eras, even
when using a different preprocessing scheme for the RAG-
C dataset. We demonstrated a new finding that the “big
three” ragtime composers also employed this syncopation
pattern more often than their contemporaries did. We il-
lustrated how other rhythmic patterns evolved over time
and revealed different frequency distributions. Lastly, we
displayed novel results showing statistically significant dif-
ferences in the way the amount of syncopation changes be-
tween consecutive measures in a ragtime composition.

In future work, we plan to continue to study the use
of syncopation in ragtime, specifically towards uncover-
ing more information about varying musical parameters
(rhythmic, melodic, or harmonic) between measures. We
believe it will be useful to expand the ideas in this pa-
per to other musical genres as well. Previous research
has successfully used information about rhythmic patterns
to assist in genre classification [17–19], and we imagine
the data presented here could be useful in such circum-
stances. We also hypothesize that algorithmic composition
techniques that rely on probabilistic techniques for rhythm
generation [4, 20] might be improved by considering how
musical parameters like rhythm change from measure to
measure as well as within a single measure.
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