
Functions with Parameters
and Arguments

• We are using a lot of new files today, and we'll make a central
folder to contain all of them.

• On the Windows desktops, double click on your student folder
(there should be a link on the desktop to a folder than is named
your name).
• If you're using a personal computer, go to wherever you save your

schoolwork.

• Make a new folder inside your student folder called cs141.
• In a web browser, go to cs.rhodes.edu/141kirlin
• Scroll down to the last item under Resources, labeled Sept 9.
• Right-click on the four files and Save As/Save Link As each file

into your new cs141 folder.

Functions
• Functions are groups of statements to which you

give a name.
• Defining a function uses the "def" keyword.

• That group of statements can then be referred to
by that name later in the program.
• Calling a function uses the name of the function then an

opening/closing set of parentheses.

def print_chorus():
print("Supercali…")
(etc)

def print_um_diddle():
print("Um diddle diddle…")
(etc)

def print_verse1():
print("Because I was afraid to speak…")
(etc)

A function for the "main" program.
def main():

print_chorus() # Print the chorus
print_um_diddle() # Print the um diddles
print_verse1() # Print the 1st verse
print_chorus() # Print the chorus again
print_um_diddle() # Print the um diddles again
print_verse2() # Print the 2nd verse
print_chorus() # Print the chorus the last time

main() # Start the program

Function definitions

Function calls

•When a function is called, Python
will

• "jump" to the first line of the
function's definition,

• run all the lines of code inside the
definition, then

• "jump" back to the point where the
function was called.

• When a function is called, Python will
• "jump" to the first line of the function's definition,
• run all the lines of code inside the definition, then
• "jump" back to the point where the function was called.

1 def twinkle():
2 print("Twinkle twinkle little star")
3 print("How I wonder what you are")

4 def main():
5 twinkle() # Call (run) the twinkle function.
6 print("Up above the world so high")
7 print("Like a diamond in the sky")
8 twinkle() # Call the twinkle function again.

9 main() # Call main() to start the program.

Once upon a time there were three little pigs
decided to build houses in the forest in which to live.

The first pig built a house out of straw.

But the Big Bad Wolf came, and he huffed, and he
puffed, and he blew the house down!

The second pig built a house of sticks.

But the Big Bad Wolf came and he blew that house
down too!

The third pig built a house of bricks.

And the Big Bad Wolf couldn't blow down the house
of bricks!

Today we're going to use functions in Python to draw
the three little pigs' houses.

Bricks

SticksStraw

Open threepigs-v1.py

Open threepigs-v2.py
• Write a brick_house() function, similar to
straw_house() and stick_house(), that
draws a brick house.

Hint: copy and paste the stick_house definition to
define brick_house.

These three functions are repetitive!
• They all draw houses, they just use different values

for the block and window_block variables.

• We can make one function that allows us to
customize the block and window_block variables.

Parameters

• A parameter is a variable placed in parentheses in
the function definition.
• This allows the caller of the function to specify a

value for that variable when the function is called.
• This value, in the calling function, is called an argument.

• As the function runs, a parameter variable can be
used within the function just like any other
variable.
• The point is to allow the caller of the function to

send one or more pieces of information into the
function that can be used to change it's behavior.

House function with parameters

House function with parameters

Parameters

Arguments

• Notice how the parameters (block and window_block)
don't have corresponding assignment statements.
• The starting value of the parameters must come from

outside the function.
• When house() is called, the arguments inside the

parentheses will be automatically assigned to the
parameters before the function beings running.

Open threepigs-v3.py
• Just run the program for now. Notice how the

output is the same as version 2, but there's only
one house function.

When Python runs the first call to house() [with the red arrow],
the string arguments "::::::" and "::[]::" are copied into the
parameters block and window_block.

Then Python begins running the lines of code inside the house
function, one by one.

Then Python begins running the lines of code inside the house
function, one by one.

"::::::" used for block

Then Python begins running the lines of code inside the house
function, one by one.

"::::::" used for window_block

Then Python begins running the lines of code inside the house
function, one by one.

"::::::" used for block

When Python runs the second call to house() [with the red arrow],
the string arguments "::::::" and "::[]::" are copied into the
parameters block and window_block.

Then Python begins running the lines of code inside the house
function, one by one.

"||||||" used for block

Then Python begins running the lines of code inside the house
function, one by one.

"||[]||" used for window_block

Then Python begins running the lines of code inside the house
function, one by one.

"||||||" used for block

Open threepigs-v3.py
• Go to the main() function definition, and add a

third call to the house() function with
appropriate arguments so that your program prints
the brick house when the program is run (in
addition to the straw & stick houses).

You've seen arguments already
• name = input("What is your name? ")
• x = 5
• y = 2
• print("x is", x, "y is", y)
• print("their sum is", x + y)

Arguments can be variables, literals, or math expressions.

(Anything you could put on the right side of a variable
assignment statement can be an argument.)

Continuing in threepigs-v3.py
• Let's let the user of our program customize their own

house picture while the program is running!
• Go to the main() function definition, and after your

third call to house (the one you just wrote), add two
(string) input statements.
• The first input statement should ask the user for a 6-

symbol string that will be used as the basic house
block.
• The second input statement should ask the user for a 6-

symbol string to be used as the window block.
• Then call house(), using the variable values the user

typed in to display a house of the user's choice.

Local variables
• Any variable used as a parameter inside a function

is "owned" by that function, and is invisible to all
other functions.
• These are called local variables because they can

only be used "locally" (within their own function).
• Any variable created inside a function is also a local

variable and cannot be seen outside of that
function.

def some_function(x):

print(“Inside the function, x is”, x)

x = 17

print(“Inside the function, x is changed to”, x)

def main():

x = 2

print(“Before the function call, x is”, x)

some_function(x)

print(“After the function call, x is”, x)

main()
Output:
Before the function call, x is 2
Inside the function, x is 2
Inside the function, x is 17
After the function call, x is 2

Wait --- what?
• There is no permanent connection between the x

in main and the x in some_function.
• Arguments are passed --- one way only --- from
main to some_function when main calls
some_function.
• This copies main's value of x into some_function's
x.

• Any assignments to x inside of some_function
do not come back to main .

Continuing in threepigs-v3.py
• Let's add a third parameter to house() that lets the

caller of this function control the number of floors the
house has!
• Inside the house() function, add a third parameter

called floors. This will be an integer variable.
• Change the code inside the function definition so that if
floors is 1, the house looks like it normally does. But
if floors is 2, it displays the house with a 2nd floor.
• You will need to change all of your calls to house() to

reflect that it requires 3 arguments now!
• Make the straw house have 1 floor, but the stick & brick

houses have 2 floors. For the user-designed house, add an
input statement to let the user choose the number of floors.

• Challenge: Change your function to allow 3 or 4 floors!

