10/28/2019

COMP 141

Strings Il

‘Rhates Callege ‘

Announcements

Reminders:
Program 6 - due tomorrow

Accessing Characters Review

Strings are stored character by character.
Each character in a string is numbered by its position:

The numbers shown here above the characters are called indices
(singular: index) or positions.

Negative Indices

Negative indexing can be used.
Particularly useful for getting characters near the end of a string.

[} 1 2 3 4 5 6 7
8 7 6 -5 4 3 2 1
Il il

s[2] is the same as s[-6] both refer to “m”

To find last letter in string use:
s[-1]

10/28/2019

String Indices

* Two ways to use square brackets

— 1 number inside -> gives you 1 character of a string
+ s[0] gives you the first character in s
* If s = “Computer”, s[0] gives you ‘C’

— 2 numbers inside (separated by a colon) -> gives you a
substring or string slice

String Slicing

« Slice: span of items taken from a sequence, known as
substring

— Slicing format: string[start : end]

* Expression will return a string containing a copy of the
characters from start up to, but not including, end

« If start not specified, 0 is used for start index
« If end not specified, len (string) is used for end
index

— Slicing expressions can include a step value and negative
indexes relative to end of string

String Slicing

s[a:b] gives you a substring of s starting from index a and
ending at index b-1.

“m” “o an agn apr

acr “o

u

s[0:1] -> “C” just like s[0@]
s[0:2] -> “Co”

s[@:7] -> “Compute”

s[3:6] -> “put”

s[0:8] -> “Computer”

Indices Don’t have to be Literal
Numbers

Say we have this code:

s = input (“Type in a string: ")
x = int(len(s) / 2)

print s[0:x])

What does this print?

10/28/2019

More Fun with Indices

* Examples using negative indices

* A negative index counts from the right side of the string, rather
than from the left

s = “Computer”

print(s[-11]) #prints r

print(s[-3:1len(s)]) #prints ter

print(s[1l:-1]) #prints ompute

S

P
P

p

More Fun with Indices

Slices don’t need both left and right indices
Missing left -> use 0 [far left of string]
Missing right -> use len(s) [far right of string]

= “Computer”
rint(s[1l:]) #prints omputer
rint(s[:5]) #prints Compu

rint(s[-2:]) #prints er

String Testing Methods

Table 9-1 Some string testing methods

Method Description

isalnum() Returns true if the string contains only alphabetic letters or digits and is at least
one character in length. Returns false otherwise.

isalpha() Returns true if the string contains only alphabetic letters, and is at least one
character in length. Returns false otherwise.

1sdigit() Returns true if the string contains only numeric digits and is at least one character
in length. Returns false otherwise.

islower() Returns true if all of the alphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

isspace() Returns true if the string contains only whitespace characters, and is at least one
character in length. Returns false otherwise. (Whitespace characters are spaces,
newlines (\n), and tabs (\t)

isupper() Returns true if all of the alphabetic letters in the string are uppercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

Example using isupper()

#This program counts the number of times
#that an uppercase letter ars in a string.

f main() :
#Create a variable to use to heold the count.
count = 0

#Get the string from the user.
my string = input("Enter a sentence: ")

#Count the uppercase letters
or ind in range (0, len{my_string)):
#access each character by its index
ch = my string[ind]
#test sach character to see if it
if ch.isupper():
count += 1

#Print the result.
print{count, "of the letters w

main()

10/28/2019

String Modification Methods

Table 9.2
Method Description
Tower() Returns a copy of the string with all alphabetic letters converted to lowercase. Any
character that s already lowercase, or is not an alphabetic letter, is unchanged.
lstrip() Returns a copy of the string with all leading whitespace characters removed.

Leading whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the beginning of the string

Istrip(char) The char argument is a string containing a character. Returns a copy of the string
with all instances of char that appear at the beginning of the string removed

rstrip() Returns a copy of the string with all trailing whitespace characters removed.
Traili
appear at the end of the string.

whitespace characters are spaces, newlines (\n), and tabs (\t) that

rstrip(char) The char argument is a string containing a character. The method returns a copy of

the string with all instances of char that appear at the end of the string removed.

strip() Returns a copy of the string with all leading and trailing whitespace characters
removed.
strip(char) Returns a copy of the string with all instances of char that appear at the

beginning and the end of the string removed.
upper () Returns a copy of the scring with all alphabetic letters converted to uppercase. Any
character that is already uppercase, or is not an alphabetic letter, is unchanged

Example

shape = input(“Enter shape: Sphere or Cube ”)

#Ensures that all letters in shape are lowercase
shape = shape.lower()

if shape == ‘sphere’ or shape
validShape = True

else:
validShape = False

More String Methods

Table 93 Search and replace methods

Method Description

endswith(substring) The substring argument is a string. The method returns true if
the string ends with substring.

find(substring) The substring argument is a string. The method returns the
lowest index in the string where substring is found. If
substring is not found, the method returns —1.

replace(old, new) The o1d and new arguments are both strings. The method returns

a copy of the string with all instances of o1d replaced by new.

startswith(substring) The substring argument is a string. The method returns true if
the string starts with substring.

Using the £ind method

main():
filename = "First Last assign
print (renameFile (filename))

renameFile (fileName) :

ind = fileName.find("f ")

fileName = fileName[ind+5:]
n fileName

main ()

Output:
lastname_firstname prg6.py

10/28/2019

Testing, Searching, and Manipulating
Strings
* You can use the in operator to determine whether one
string is contained in another string

— General format: stringl in string2
* stringl and stringZ can be string literals or
variables referencing strings
* Similarly you can use the not in operator to determine
whether one string is not contained in another string

In-Class Lab

