11/1/2019

COMP 141

Lists |

‘Rhates Callege

Announcements

Program 7 assigned — due Sunday, November 10th

Reminder:
Midterm 2 on Wednesday, November 6t

Introduction to Lists

« List: an object that contains multiple data items
— Element: An item in a list
— Format: 1ist = [iteml, item2, etc.]
— Can hold items of different types

* print function can be used to display an entire list

* list () function can convert certain types of objects to lists

Introduction to Lists

A list of integers
even_numbers = [2, 4, 6, 8, 10]

A list of strings:
names = [‘Molly’, ‘Steven’, ‘Will’,

A list holding different types:
info = [‘Alicia’, 27, 1550.87]

‘Alicia’]

11/1/2019

Example Using Lists

def main():
Create a list with some items
food = ['Pizza', 'Burgers', 'Chips']

Display the list
print ("Here are the items in the food list:")
print (food)

¥ call the main function.
main()

Program Output

Here are the items in the food list:
['Pizza', 'Burgers’', 'Chips']

Why use lists?

* Lists exist so programmers can store multiple
related variables together.

* Useful when we don't know ahead of time
how many items we are going to store.
— Lists solve this problem because a single list can

hold from zero to practically any number of items
init.

Basic list operations

* Lists are created using square brackets around items
separated by commas.

mylist = [1, 2, 3]
numbers = [-9.1, 4.77, 3.14]
fred = ["happy”, "fun", "joy"]

* Lists are accessed using indices/positions just like
strings.

* Most (but not all) string functions also exist for lists.

Strings Lists

string_var = "abc123" list_var = [item1, item2, ...]
string_var ="" list_var=1[]

len("abc123") len([3, 5, 7, 9])
len(string_var) len(list_var)

string_var([p] list_var[p]

string_var[p:q] list_var[p:q]

str3 = strl + str2
str3 = "abc" + "def"

list3 = list1 + list2
list3 =[1, 2, 3] + [4, 5, 6]

i"in "team" -> False 7in[2, 4, 6, 8] -> False

11/1/2019

One important difference

Strings are immutable

* You can't change a string without making a copy of it.
s = "abc"
s[o] = "A" # illegal!
s = "A" + s[1:] # legal

Lists are mutable

* Can be changed "in-place" (without explicit copying)
L =[2, 4, 6, 8, 10]
L[@e] = 15 # legal
L.append(26) # legal

Compare Immutable and Mutable

* How can we switch the first and last letter in
a string?

* How can we switch the first and last items in
a list?

Three common ways to make a list

* Make a list that already has stuff in it:
1st = [4, 7, 3, 8]

* Make a list of a certain length that has the same element in
all positions:
1st = [0] * 4 t#tmakes the list [0,0,0,0]
— Common when you need a list of a certain length ahead of time.
— Uses the repetition operator, similarly to strings

* Make an empty list:
Ist = []
— Common when you're going to put things in the list coming
from the user or a file.

Simple list problem
* How would we write a function to convert a
number from 1-12 into the corresponding

month of the year as a string?

def getmonth(month):

Ex: getmonth(2) should return
“February”

11/1/2019

Examples of Concatenation

a=1[1,2,3]

b = [4,5,6]
c=a+b
print(c) # prints [1, 2, 3, 4, 5, 6]

mylist = ['a','b"','c"]
other = ['d','e"',"f"]
print (mylist + other) #['a', 'b', 'c', 'd', 'e', 'f']

Simple list problem

* What does this code do?

Ist = [2] * 3

1st2 = [4] * 2

1st3 = 1st + 1st2

for x in range(@, len(lst3), 2):
1st3[x] = -1

Examples of List Slices

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
numbers([2:] #[3, 4, 5, 6, 7, 8, 9, 10]
numbers([:-2] #[1, 2, 3, 4, 5, 6, 7, 8]
numbers([1:8:2]1#[2, 4, 6, 8]
numbers[5::-1]1#[6, 5, 4, 3, 2, 1]

numbers([::-1] #[(10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Program 8-8 (total _list.py)

This program calculates the total of the values
4 in a list.

def main():
Create a list.
numbers = [2, 4, 6, B, 10]

Create a variable to use as an accumulator.
total = 0

Calculate the total of the list elements.
for value in numbers:+———— Can iterate by item in the list
total += value

Display the total of the list elements.
print('The total of the elements is', total)

Call the main function.
main()

Program Output
The total of the elements is 30

11/1/2019

The NUM DAYS censtal
£ days th
NUM_DaYS = 5

nolds the number of
we will gather sales data for.

def main():
create a list te hold
for each day.
sales = [0] * NUM_DAYS

¥ Creat
index = 0

a variable to hold an index.

the sales for each day.

index < NUM_DAYS:

print('Day #', index + 1, ': ', sep=""
sales[index] = £loat(input())

index += 1

print(value)

Call the main function.
main ()

Using the repetition operator

the sales
— toinitialize list

snd='")

Program Output (with input shown in bold)
Enter the sales for each day.
Day #1: 1000 (Enteq)

Day #2: 2000 (Enier)

Day #3: 3000 (Enier)

Day #4: 4000 (Enier)

pay #5: 5000

Hore are the values you entered:
1000.0

2000.0

3000.0

4000.0

5000.0

Practice

Get the file Nov1.py from my Box.com code directory. It has the

main function written for you and stubs for 2 other functions
that you will need to write.

findAverage(numbers) —will return the average of all the

numbers in the list

countNumbers(numbers, average) - will return 2 values;

it counts the number of above average and below average
numbers in a list

