
COMP 141 - Computer Science I: Programming Fundamentals – Fall 2019 
CRN# 20505 

Instructor: Catie Welsh 
Meetings: MWF 11am-11:50am, Briggs 019 
Course website: http://cs.rhodes.edu/welshc/CS141/F19/ 
Email: welshc@rhodes.edu (please include “CS 141" somewhere in the subject) 
Office hours: Tues/Thurs. 10-11:30am, or by appointment. (Briggs 208) 
 
Official Course Description: An introduction to the fundamental concepts and practices of procedural 

programming. Topics include data types, control structures, functions, arrays, files, and the 
mechanics of running, testing, and debugging. Emphasis is placed on program design and problem-
solving techniques. The course also includes an introduction to the historical and social context of 
computing and an overview of computer science as a discipline. 

 
Unofficial Course Description: CS 141 is a required course for computer science majors and should be 

taken during the first year. It is the first course in the sequence for majors and offers an introduction 
to the fundamental principles of programming, abstraction, and design. 

 
       This course is aimed at helping students acquire the reasoning and abstraction skills needed to 

design algorithms and implement them as computer programs, while also illustrating some of the 
“big ideas" of computer science. This course teaches one how to think as a computer scientist, by 
teaching the process of building abstractions to hide implementation details, and of controlling the 
intellectual complexity of designing large software systems by decomposing problems into simpler 
sub-problems. We will explore the joy and beauty of computing and see how computing skills are 
applicable in everyday life. 

 
Though computer science is more than just programming, knowing how to translate your thoughts 
into code is an important skill for a computer scientist to have. This course will use the Python 
programming language as the vehicle for exploration of fundamental computer science concepts. 
However, this is not a course about Python; it is about the structure and interpretation of computer 
programs. 

 
Course Objectives: At the end of this course, you should be able to: 

• create algorithms to solve simple computational problems; 

• use the Python programming language to implement, test, and debug algorithms for solving 
simple problems; 

• apply the techniques of abstraction and decomposition to break a problem into smaller, easily-
understandable pieces; 

• understand and modify algorithms and programs written by someone else; and 

• apply consistent documentation and style standards to the programs you write. 
 

Course Topics: (not necessarily in this order) 

• Program design 

• Testing and debugging 

• Data types, variables, expressions, and 
statements 

• Control flow structures (if, while) 

• Functions, problem decomposition, and 
abstraction 

• One- and two-dimensional lists 

• String manipulation 

• File reading and writing 
 
Textbook: Programming in Python 3 (online textbook by zyBooks). 

Supplemental materials will be distributed in class. The textbook is designed to serve as a reference 
and there will be material discussed in class that the textbook does not cover. 

http://cs.rhodes.edu/welshc/CS141/F19/
http://cs.rhodes.edu/welshc/CS141/F19/


Prerequisites: None. This course does not assume any previous programming or computer science 
experience. You are expected to have a reasonable high-school mathematics background to 
appreciate the use of the mathematical notation. 

 
Coursework: 

 Tentative weight  Tentative date 

Programming projects 30%  

zyBook assignments 10%  

In-class quizzes 4%  

Midterm  1 18%  Wednesday, October 2nd, in class 

Midterm 2 18%  Wednesday, November 6th, in class 

Comprehensive Final exam 20%  Friday, December 6th 1-3:30pm 

 
Grade Assignments: 

• Grading is based on the below scale: 
o A : [93%, 100%] 
o A-: [90%, 93%) 
o B+:  [87%, 90%) 
o B:  [83%, 87%) 
o B-:  [80%, 83%) 
o C+:  [77%, 80%) 

o C:  [73%, 77%) 
o C-:  [70%, 73%) 
o D+:  [67%, 70%) 
o D: [63%, 67%) 
o D-:  [60%, 63%) 
o F:  [0%, 60%) 

• For borderline cases, I may take into account participation, and/or attendance, and improvement 
during the semester. However, you should not assume that final grade averages will be rounded. 

 
Attendance: Attendance is expected for each class. If your attendance deteriorates, you will be referred to the 

dean and asked to drop the course. Attendance, participation, and apparent overall improvement trend 
may be considered in assigning a final grade. Attendance will be checked each class lecture period. After 
five unexcused absences, each additional absence will reduce the final grade for the course by one letter 
grade. 

 
Workload: It is important to stay current with the material. Learning to program takes regular practice, and 

you should be prepared to devote at least 2-3 hours outside of class for each in-class lecture. In particular, 
you should expect to spend a significant amount of time for this course working on a computer trying 
example programs and developing programming assignments. Do not wait until the last minute to start 
your programming assignments. 

 
Programming Assignments:  

• All programs assigned in this course must be written in Python 3. The particular Python environment 
that will be used in this course is available in the computer labs on campus. You can also download the 
software onto your own computer from http://www.python.org/download. However, your programs 
must run correctly, on the lab computers.  

• Back up your code somewhere as you're working on your assignments. Computer crashes or internet 
downtime are not valid excuses for missing a deadline. 

• Programming assignments will be done either using the online zyBook environment or turned in via 
Moodle. Emailed programs will not be accepted. In general, I do not accept late assignments. 

• You are allowed to use the course textbook and the course notes for these programs. The use of any 
other material is forbidden. 

• Grades are assigned to programs as follows by this general guideline: 
- A (100 pts): The program is carefully designed, efficiently implemented, well documented, and 

produces clearly formatted, correct output. 



- A- (93 pts): The program is an ‘A’ program with one or two of the minor problems described 
for grade ‘B.’ 

- B (85 pts): The program typically could easily have been an A program, but it may have 
minor/careless problems such as poor, inadequate, or incomplete documentation; several 
literal values where symbolic constants would have been appropriate; wrong file names (these 
will be specified per program assignment); sloppy code format; minor efficiency problems; etc. 
(This is not an exhaustive list.) You would be wise to consider B the default grade for a working 
program — this might encourage you to review and polish your first working draft of an 
assignment to produce a more professional quality final version of your program. 

- C (75 pts): The program has more serious problems: incorrect output or crashes for important 
special cases (the “empty” case, the “maxed-out” case, etc.), failure to carefully follow design 
and implementation requirements spelled out in the assignment, very poor or inefficient 
design or implementation, near complete absence of documentation, etc. 

- D (60 pts): The program runs, but it produces clearly incorrect output or crashes for typical 
cases. Or, it may deviate greatly from the design or implementation requirements stated in the 
assignment description. 

- F (35 pts): Typically, an ‘F’ program produces no correct output, or it may not even run. It may 
“look like a program” when printed as a hard copy, but there remains much work to be done 
for it to be a correct, working program. 
 

Coding Style: Designing algorithms and writing the corresponding code is not a dry mechanical process, but an 
art form. Well-written code has an aesthetic appeal while poor form can make other programmers (and 
instructors) cringe. Programming assignments will be graded based on correctness and style. To receive 
full credit for graded programs, you must adhere to good programming practices. Therefore, your 
assignment must contain the following:  

• A comment at the top of the program that includes the author of the program, the date, and a brief 
description of what the program does 

• Concise comments that summarize major sections of your code, along with comments for each 
function in your code that describes what the function does 

• Meaningful variable and function names 

• Well-organized code 

• White space or comments to improve legibility 

• Avoidance of large blocks of copy-and-pasted code 
 
Class Conduct: 

• I encourage everyone to participate in class. Raise your hand if you have a question or comment. 
Please don't be shy about this; if you are confused about something, it is likely that someone else is 
confused as well. Teaching and learning is a partnership between the instructor and the students, and 
asking questions will not only help you understand the material, it also helps me know what I'm doing 
right or wrong. 

• Do not use your cell phone for calls or texting while in class, and silence their ringers. 

• If you cannot make it to class for whatever reason, make sure that you know what happened during 
the lecture that you missed. It is your responsibility, and nobody else's, to do so. The best way to do 
this is to ask a classmate. 

• If you have to leave a class early, inform the instructor in advance. It is rude to walk out in the middle 
of a lecture. 

 
Makeups: If you have a valid reason for a makeup exam, inform your instructor as soon as you know. A valid 

reason is a medical emergency, a death in the family, religious observation, a college-sponsored on-
campus activity, and, quite frankly, very little else. Generally, assignment extensions will only be granted 
for unplanned circumstances (e.g., the first two reasons above). 

 



Students with Disabilities: If you have a documented disability and wish to receive academic accommodations, 
please contact the Office of Student Disability Services at x3885 as soon as possible. 

 
Collaboration: All programming assignments done outside of class, both the major Python assignments and 

the zyBook exercises should be completed on one's own. Occasionally there will be collaborative 
assignments completed during class, but all homework assignments must be completed individually, 
unless otherwise stated. Put very simply, do not discuss any programming assignments or share code with 
anybody else. I will be checking for similar assignments and will turn violations over to the honor council. 

 
Academic Integrity: Plagiarism, cheating, and similar anti-intellectual behavior are serious violations of 

academic ethics and will be correspondingly penalized. If you are concerned about a possible violation of 
this kind, please talk with me. I understand that being a student at Rhodes can be stressful sometimes and 
you will have many demands on your time. However, I would much rather have you turn in a partially-
completed assignment or do poorly on a test than have you violate the Rhodes Honor Code. I can, and very 
much want to, help you if you don't understand the material, but violations of academic integrity will be 
dealt with harshly.  
 
Unless otherwise specified, everything you submit in this course must be your own work and represent 
your individual effort. These are all included in the definition of reportable Honor Code violations for this 
course: copying all or part of a solution to a problem, downloading a solution from the internet and 
submitting it as your own, having someone else provide the solution for you, or allowing someone else to 
copy from you. If you have any doubt about what type of behavior is acceptable, please talk with me. 
 

Diversity: A diverse learning community is a necessary element of a liberal arts education, for self-
understanding is dependent upon the understanding of others. We are committed to fostering a 
community in which diversity is valued and welcomed. To that end any discrimination or harassment on 
the basis of race, gender, color, age, religion, disability, sexual orientation, gender identity or expression, 
genetic information, and national or ethnic origin, will not be tolerated in the classroom.  
 
We are committed to providing an open learning environment. Freedom of thought, a civil exchange of 
ideas, and an appreciation of diverse perspectives are fundamental characteristics of a community that is 
committed to critical inquiry. To promote such an academic and social environment we expect integrity 
and honesty in our relationships with each other and openness to learning about and experiencing cultural 
diversity. We believe that these qualities are crucial to fostering social and intellectual maturity and 
personal growth.  
 
Intellectual maturity also requires individual struggle with unfamiliar ideas. We recognize that our views 
and convictions will be challenged, and we expect this challenge to take place in a climate of open-
mindedness and mutual respect. 

 
Sexual Misconduct Disclosure: I will do my best to help any student who comes to me with non-course-related 

concerns. Please keep in mind, however, that all faculty are required by policy to share knowledge of 
sexual assault, dating/domestic violence, sexual exploitation, stalking, sexual harassment and sex/gender 
discrimination with the Title IX Coordinator, Tiffany Cox.  For more information about Rhodes’ sexual 
misconduct policy or to make a report please see www.rhodes.edu/titleix. 

 
I reserve the right to alter this syllabus as necessary. 
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