
Lab: Graphics, Functions, and Local Variables

1. Create a program to draw a bullseye (looks like the Target logo) on the
screen.

a. First, define a main() function that opens a canvas, draws one circle
using draw_filled_circle of radius 50 and closes the canvas on a
click. (Do this just to make sure your graphics are working
correctly.)

b. Then, modify main() so it draws five concentric circles using the draw_filled_circle
function. The circles should have radii of 10, 20, 30, 40, and 50, and should alternate colors
(use set_color) so you get a bullseye effect (see the picture to the right).
Hint: the circles must be drawn in a certain order.

2. Define a function called “draw_bullseye” that takes two parameters that will represent the x-
and y-coordinates of the center of the bullseye. Add code to the body of draw_bullseye so that
when called, it draws a bullseye at the (x, y) location specified by the parameters. Then, edit your
main() function to call draw_bullseye twice with two different sets of (x, y) locations (pick any
coordinates you’d like). The effect should be that your program should draw the bullseye twice at
different locations on the canvas.

Hints:

• Your function definition line will look like this:
def draw_bullseye(x, y):

• You should keep the open_canvas and close_canvas function calls in main, because you
only want those to happen once in the whole program, not once for every bullseye.

• When you’re done, there should not be any circle-drawing function calls inside main
anymore; they should only be inside of draw_bullseye. All main should do is open a
canvas, call draw_bullseye twice, and close the canvas on a click.

3. Modify your draw_bullseye function so it takes a third and fourth parameter. Call these
parameters color1 and color2. These parameters will be strings, and will allow the caller of the
bullseye function choose two alternating colors for the bullseye. Modify the code in the bullseye
function to use the color1 and color2 variables rather than the fixed colors you picked earlier.

For instance, if the user wanted a bullseye centered at (100, 100) colored red and black, they
should be able to call the function like this: draw_bullseye(100, 100, “red”, “black”)

Once you make this change to the definition of draw_bullseye, make sure you also change the
calls to draw_bullseye in main to reflect the additional arguments.

4. Modify your program so the user can enter --- from the keyboard --- the (x, y) coordinates of the
center of the bullseye, and the colors they want to paint it.

a. This will require four separate input statements: one for x, one for y, and two for the colors.
b. The input statements should not go inside the bullseye function; they should be inside

the main function, and the information typed in should be passed as arguments to the
bullseye function.

5. Modify your bullseye function definition to take a fifth argument, the radius of the bullseye. You’ll
need to do some math to figure out what the radii of the nested circles should be changed to. Don’t
forget to modify the function call(s) in main to add in the fifth parameter (try different radii so you
know the bullseye scales up and down in size).

6. Modify your main function so three bullseyes are drawn after the user
inputs the four variables. The first bullseye should be drawn as in
problem 4 (based off the inputs the user supplies), but the second and
third bullseyes should be offset slightly so as to create the pattern to the
right (which sort of looks like Mickey Mouse ears). The point of this
problem is that if the user types in different (x, y) coordinates, all three
bullseyes should shift locations on the canvas so the final drawing always
looks like the one to the right.

• Challenge: Write a function called draw_square(x, y, side) that takes as arguments the (x, y)
coordinates of the center of a square and the length of a side. You should use draw_line,
draw_polyline, or draw_rect. Remember: x and y should be the center of the square, not a
corner.

• Challenge: Write a function called draw_nested_squares that acts just like draw_bullseye, but
the effect is a set of nested squares, rather than nested circles. This is more mathematically
challenging. You can use draw_filled_rect for this.

• Challenge: Modify your program so the user can choose the center of the bullseye using a mouse
click rather than typing in the coordinates. Refer to the graphics library handout.

• Challenge: Modify your program so the user can choose the center and radius of the bullseye with
two mouse clicks (first click chooses the center, second click chooses a point on the border of the
bullseye from which you can compute the radius). You’ll need to use the distance formula for this
one:

The distance from point (x1, y1) to (x2, y2) is √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. To use the square root
function in Python, put from math import * at the top of your program, then you can use the
function sqrt().

