
CS 342: Bioinformatics
Homework 5 - Assembly Programming Project - Part 1 Spring 2020

Note: This is part one of a two part assignment. Much of the code you write for this assignment
will be used in part two. This assignment is due by 11:55pm on Mon, April 6. This part of the
assignment is worth 17 points. If you choose, you may work with a partner on this assignment.
You must submit your code and any other requested files as a zip file to Moodle.

1 Project Overview

In this project we will explore the process of genome assembly. Genome assembly of real DNA
sequencing data is still a challenging area where many researchers are currently working. Thus,
this assignment will focus on a simplified version of the problem using simulated data. As an
overview, in part one of this assignment you will do the following:

• You will create a simulator that emulates the process of sampling reads from a longer
piece of DNA (similar to the output of a DNA sequencing experiment).

• You will construct a De Bruijn graph from a set of reads. (Note, in part 2 of the assign-
ment, you will modify and use this graph to complete assembly tasks).

You must use Python for this assignment. If you’d like to use another programming language
(C, C++, Java, etc.) you must talk to me first. Any data files mentioned below can be
downloaded from the link on Moodle (HW 5 Files). This directory also contains examples of
any file formats mentioned below. Lastly, please read this whole document carefully
before beginning.

2 Project Specifications

Note: I do NOT expect you to be able to assemble “full size” genomes as that would require
more RAM than is available on most personal machines. You should be able to handle data
created for the sample.fasta file provided.

2.1 Simulating Data

You will need to provide the following Python script: simulate.py that simulates DNA se-
quencing reads. I want to be able to run your program from the command line by typing
something like the following:

$ python simulate.py example.fa 30 50 0.01

I have provided starter code in the HW5 Files folder that shows you how to do this (simulate starter.py).
This file also includes code to read a fasta file; you have written this function before, but I wanted
to make sure everyone used the same read fasta function.
simulate.py will take in the following parameters (in this order):

• FASTA sequence file (string) - File containing a DNA sequence.

• Coverage (integer) - The coverage of the simulated sequencing experiment.

• Read length (integer) - The length of reads to simulate.

• Error rate (float) - The sequencing error rate (between 0 and 1).

Page 1



CS 342: Bioinformatics
Homework 5 - Assembly Programming Project - Part 1 Spring 2020

simulate.py will simulate N reads from the DNA sequence in the supplied FASTA. You will
use something called Lander-Waterman statistics to compute the value of N . In particular, if
you have a genome of length G, coverage of C and read length of L, then you will compute N
as follows: N = C·G

L . Ex: G = 100, C = 5, L = 50, then N = 10, meaning you should create 10
reads of length 50, randomly sampled from the original genome. Reads should start at random
indices in the genome (that is, they are uniformly distributed across the genome) and will all
have the same orientation (that is, we are ignoring the existence of the reverse complement
in DNA). Make sure that reads that start near the end of the genome still contain exactly L
characters.

An error (incorrect nucleotide) should be introduced at every position in every read with prob-
ability equal to the specified error rate. The allele of the incorrect nucleotide is chosen from
the other three alleles with equal probability. For example, suppose your error rate is 0.01. For
each position in each read you will emulate “flipping a coin” with a 99% chance of landing on
tails and a 1% chance of landing on heads. If the coin lands as heads (let’s say on a character
A), you will swap the character to one of the other characters with equal probability (so, here
it will change to either G, T, or C).

You will need to utilize the random library in Python (import random). Take a look at the
Python documentation: https://docs.python.org/3.8/library/random.html.

Your program will output each simulated read as a separate line in a file called reads.txt in
the current directory. For example, running:

$ python simulate.py example.fa 30 50 0.01

will create a file called reads.txt that may look like the following:

TAGCACCACTTCTGCGACCCAAATGCACCCTTTCCACGAACACAGGGTTG

TCCGATCCTATATTACGACTTCGGGAAGGGGTTCGCAAGTCCCACCCTAA

ACGATGTTGAAGGCTCAGGTTACACAGGCACAAGTACTATATATACGTGT

2.2 Constructing a De Bruijn Graph

You will need to provide the following Python script: assemble.py that constructs a De Bruijn
Graph from a set DNA sequencing reads. (You will add more to this part of the assignment in
part 2).

assemble.py will take in the following parameters (in this order):

• Reads file (string) - A file of reads, as output by simulate.py.

• k (int) - the size of k-mer to use when building a De Bruijn graph.

assemble.py will construct a de Bruijn graph for the specified k-mer size from the set of reads
contained in the supplied reads.txt file. Once the graph is constructed, your program should
print the following information to the screen: (1) The number of vertices in the de Bruijn graph;
and (2) The number of unique edges in the de Bruijn graph. So, if you have an edge from vertex
v to w with multiplicity 2, this edge will only count once towards the total number of edges.

Page 2

https://docs.python.org/3.8/library/random.html


CS 342: Bioinformatics
Homework 5 - Assembly Programming Project - Part 1 Spring 2020

For example, running your Python script might produce the following output (for a very small
input).

$ python assemble.py reads.txt 3

Number of vertices in graph: 5

Number of edges in graph: 5

As a reminder, a de Bruijn graph for a specified k-mer will have vertices that represent sequences
of length k − 1.

2.2.1 Optional: Visualizing the graph

This section is optional; adding code to your program that outputs a .dot file will earn you up
to 4 additional points on this assignment.

It is often very useful to create something called a DOT file that allows you to visualize the de
Bruijn graph (see below for instructions on how to do this). However, for large and complicated
assemblies this file may not be very interpretable, but it should be useful for debugging with
smaller examples. Your program should automatically create a .dot file (in the same
directory as your code) for all de Bruijn graphs it constructs if they contain less
than or equal to 30 vertices.

The DOT language provides an easy way to make visualizations of graphs (the wikipedia page
also gives a nice overview). Suppose, your code produced a file called example.dot in the
current directory that looks like the following:

digraph mygraph{

"ATG"->"TGC"

"ATG"->"TGG"

"GTG"->"TGG"

"TGG"->"GGC"

}

In the DOT format, a directed edge between two vertices is indicated by -> (we can also rep-
resent undirected edges with --. The name of the graph (mygraph in the above example) does
not matter. In fact, the dot files you produce will look very much like the above example, but
with different sequences. This makes it very easy for you to visualize your output. For example,
when your program outputs a file called example.dot you can easily visualize this tree using
dot program, by either opening the .dot file with the GraphViz software on your computer, or
typing the following command into the terminal (depending on your OS and how you installed
the program):

$ dot -Tpng example.dot -o example.png

This will produce a graphic image in PNG format, and save it to a file called example.png.
For instance, the above command, when run on the example DOT file above, will produce the
following PNG (Figure 1). You can get the dot program by installing graphviz.

Page 3

https://graphviz.gitlab.io/documentation/
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/


CS 342: Bioinformatics
Homework 5 - Assembly Programming Project - Part 1 Spring 2020

Figure 1: The graph created from the DOT file above.

3 Data Analysis

Complete the following steps and report your answers to any of the questions asked in a PDF
you submit with your assignment.

1. Using the FASTA file called sample.fasta in the data directory for this assignment,
create a set of reads using the following parameters: coverage = 12, read length = 50,
error rate = 0.0. Save this as a file called sample c12 r 50 e0.00.txt and include the
file in your submission.

2. Construct a de Bruijn graph for the dataset created in the previous setp using k = 13 and
report the number of vertices and edges in your graph.

3. Using the FASTA file called sample.fasta in the data directory for this assignment,
create a set of reads using the following parameters: coverage = 12, read length = 50,
error rate = 0.01. Save this as a file called sample c12 r 50 e0.01.txt and include the
file in your submission.

4. Construct a de Bruijn graph for the dataset created in the previous step using k = 13 and
report the number of vertices and edges in your graph.

5. Give a short description (a few sentences) for why the number of edges/vertices are either
similar or different between these two simulations.

4 Suggestions

• I suggest doing lots of testing of your code on smaller input files first before trying to
run on the FASTA file I provided you. It is much easier to debug on smaller input files.
You might even want to think about how to create a “perfect” set of reads to help with
debugging.

• Carefully commenting your code and thinking about how you design your code will be
helpful for the second part of this assignment. In this part of the assignment you will
likely be extending your existing code. For example, you may need to perform some
graph simplifications or do traversal through your graph. Keeping this in mind now, will
help you later.

• I will only test your code with valid input (e.g., the provided error rate with be between
0 and 1, inclusive), but it is always good practice to think about how you handle invalid
input with your code.

Page 4



CS 342: Bioinformatics
Homework 5 - Assembly Programming Project - Part 1 Spring 2020

5 What to hand in

Please hand in to Moodle a zip file containing all of the following:

1. The two Python scripts as described above.

2. A README that explains the following:

• How to compile your code (if necessary) and any dependencies (i.e. Biopython).

• A description of any known bugs.

• Any major design decisions that may affect the output of your programs.

• If you attempted the .dot file output for extra credit and if you got it working.

• The names of anyone you discussed the project with and any outside resources you
consulted when writing the code.

3. A PDF that includes the information requested in the Data Analysis section.

6 Grading

This project will be worth 17 points. These points will be assigned according to the following
five categories.

• Data Simulation Program (6 points) - I will analyze your code to ensure that it
adheres to the specifications outlined in this document. This is where clear commenting
will be useful to you as this will be graded only by looking at your code.

• De Bruijn Graph Constructions (6 points) - I will analyze and run your code to en-
sure that you are correctly building the de Bruijn graph and adhering to the specifications
outlined in this document.

• Data analysis (3 points) - Did you include the requested files and answers in your
submission?

• Comments, style and design (2 points) - Make sure that your code is well commented
and any important design decisions are clearly documented in your README file.

• Graph visualization extra credit (up to 4 additional points) - I will test your
output file. (4 if it outputs correct file for all inputs, 3 if it outputs correct files for some
inputs, 2 if it outputs a mostly correct file, 1 if you output a file with a .dot extension but
it is not correct).

Page 5


	Project Overview
	Project Specifications
	Simulating Data
	Constructing a De Bruijn Graph
	Optional: Visualizing the graph 


	Data Analysis
	Suggestions
	What to hand in
	Grading

