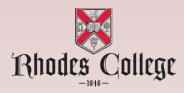
COMP 355 Advanced Algorithms

Graphs: Topological Sort Chapter 3 (KT)



Graph Search Algorithms

BFS and DFS almost the same for directed and undirected graphs BFS on directed graphs: still O(m + n)

- It is possible for node s to have a path to a node t even though t has no path s
- Computing the set of all nodes t with the property that s has a path to t

DFS on directed graphs: still O(m + n)

• At node u, recursively launches depth-first search, in order, for each node to which u has an edge

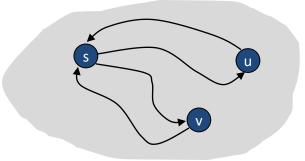
Strong Connectivity (Directed Graphs)

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A directed graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

- Pf. \Rightarrow Follows from definition.



ok if paths overlap

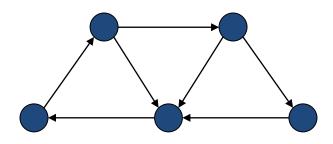
Strong Connectivity: Algorithm

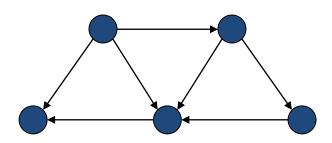
Theorem. Can determine if G is strongly connected in O(m + n)time.

Pf.

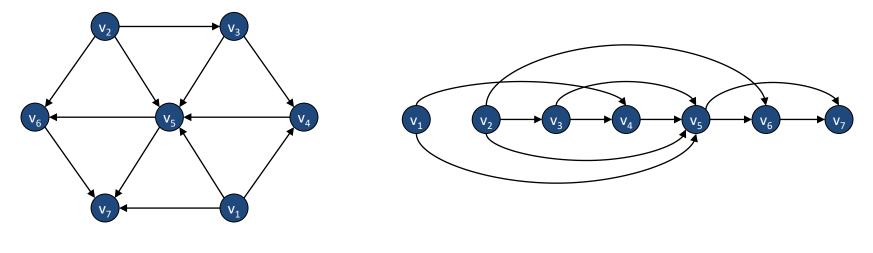
- Pick any node s.
- Run BFS from s in G. ____ reverse orientation of every edge in G

- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions. ۲
- Correctness follows immediately from previous lemma.





Def. An DAG is a directed graph that contains no directed cycles. Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j . Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.



a topological ordering

Precedence Constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_i .

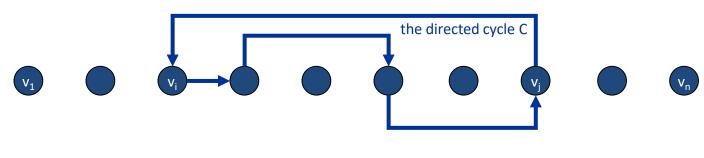
Applications.

- Course prerequisite graph: course v_i must be taken before v_i.
- Compilation: module v_i must be compiled before v_j. Pipeline of computing jobs: output of job v_i needed to determine input of job v_j.

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

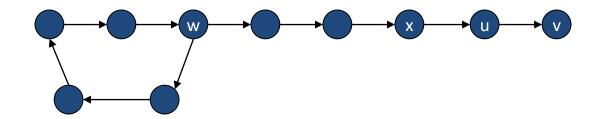
- Suppose that G has a topological order v₁, ..., v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_i, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and v₁, ..., v_n is a topological order, we must have j < i, a contradiction.



Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.



Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- G { v } is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, G { v } has a topological ordering.
- Place v first in topological ordering; then append nodes of G { v } in topological order. This is valid since v has no incoming edges.

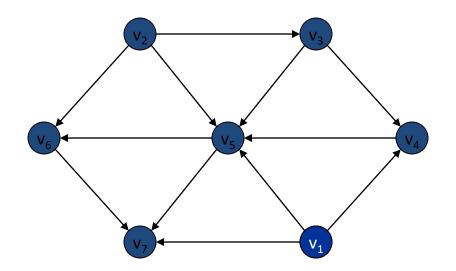
```
To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

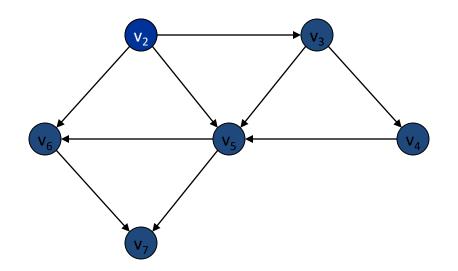
Delete v from G

Recursively compute a topological ordering of G-\{v\}

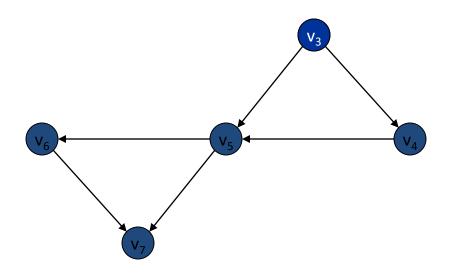
and append this order after v
```



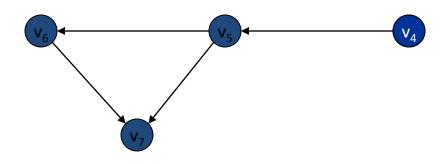
Topological order:



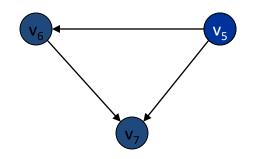
Topological order: v₁



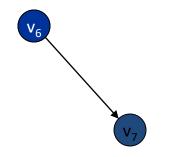
Topological order: v_1, v_2



Topological order: v_1 , v_2 , v_3

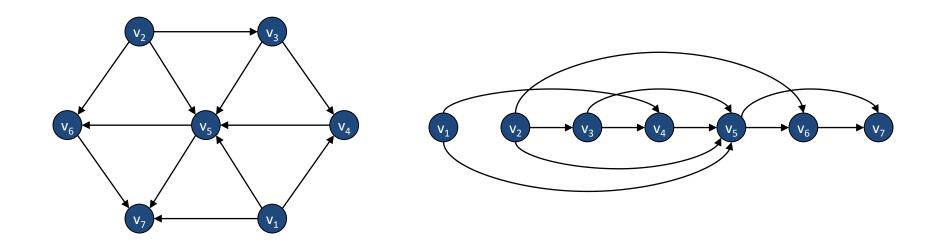


Topological order: v_1 , v_2 , v_3 , v_4



Topological order: v_1 , v_2 , v_3 , v_4 , v_5

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6



Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 .

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time. Pf.

- Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement count [w] for all edges from v to w, and add w to S if count [w] hits O
 - this is O(1) per edge