COMP 355
Advanced Algorithms

Divide and Conquer: Inversion Counting
KT: 5.1-5.3

G

Rhodes College

1848 —

Divide-and-Conquer

* Divide-and-conquer.
— Divide: Break up problem into several parts.
— Conquer: Solve each part recursively.
— Combine: Merge solutions to sub-problems into overall solution.

* Most common usage.
— Break up problem of size n into two equal parts of size %n.
— Solve two parts recursively.
— Combine two solutions into overall solution in linear time.

* Consequence.
— Brute force: nZ.
— Divide-and-conquer: nlog n.

MergeSort

Basis case: If size(A) = 1, then the array is trivially sorted and we are done.
General case: Otherwise:
Divide: Split A into two subsequences, each of size roughly n/2. (More precisely, one
will be of size |n/2| and the other of size [n/2].)
Conquer: Sort each subsequence (by calling MergeSort recursively on each).
Combine: Merge the two sorted subsequences into a single sorted list.

A _) A _)
P i m m+ 1 j r P i m m+ 1 j r
| lalil[| | [alj] | | lall] | | |alj]] |
B:0 \—L if Ali] < Aj] B:o i Al > Alj]
| [ali] | | | |afj]| |
k k
Merging two sorted lists.
[nput Output
(6]s[a]1]7]2]5]3] oo [f2fsfa]s]6]7]8]
o I ~— split g -~ - merge
(6lslaft] [7]2]5]3] [L{afels] [2]3]5]7]
e ~ o ~a = splif A A - . = Inerge
L6]s] [aft] [7]2] [513] 6]s] [efa] [2]7) [3]5]
/oo ;oo P /= split Ao Foy AN # % - mmerge
6] (8] L] [(2] [2] (5] [B]————- ~[6] (5] (4] [[7] [2] [5] 3]

MergeSort example.

Inversion Counting

Music site tries to match your song preferences with others.
* You rank n songs.
* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
e Myrank: 1, 2, ..., n.
* Yourrank: a;, a,, ..., a,.
* Songsiandjinvertedifi<j, buta,>a;.
Songs

A8 Cc D E
e 1 2 3 4 5

1 3 4 2 5
| — |

Inversions
3-2, 4-2

\Y

Brute force: check all ®(n?) pairsiand j.

Applications

Voting theory.

Collaborative filtering.

Measuring the "sortedness" of an array.
Sensitivity analysis of Google's ranking function.
Rank aggregation for meta-searching on the Web.

Divide-and-conquer solution

Basis case: If size(A) = 1, then there are no inversions.
General case: Otherwise:
Divide: Split A into two subsequences, each of size roughly n/2.

Conquer: Compute the number of inversions within each of the subsequences.
Combine: Count the number of inversions occurring between the two sequences.

7 —m — 1 elements

.

j1 i m m+ 1] T

<afi [=afi]]
L
inverted

Counting inversions when Ali] < A[j].

-

Inversion Counting Algorithm

InvCount (&) :

1f len() <= 1:

n &, 0
mid = int(leni{k)/2)

S -

LoD

left, %1 = InvCount(&[:mid])
right, %2 = InvCount (&[mid:])
2, x3 = invMerge (left, right)

return &, (x1 + =2 + x3)
invMerge (&, B):

m = []

cnt = 0

i=731=10

while 1 < len(f) and 7 < len(B):

1t A[i] < B[3]:
m.append (&A[1i])
i+=1

o

m.append(B[]])
cnt += len(R) - 1
3o+= 1

m.extend (&[1:])
m.extend(B[]:])

eturn m, cnt

B

O

o B B

o

1l element or fewer —> no inversions
find midpoint
count inverslions in

half
count inversions in the right half

the left

merge and count inversions

merges left and right list

o

inversion counter
while both subarrays are nonempty
take next item from left subarray

increment the left array counter

take next item from right subarray

increment the inversion counter

copy extras from left to m

copy extras from right to m

Inversion Counting Example

[nput Output
6G|8|4[1|7]2]|5]3 ‘ 112]|3(4(5|6]|7|8
— . -— split — \"'—““:;:\ -— 0 inversions
Gl&[4]1 T1215]3 1 (46|85 3
-~ ~ - ~. = split ,::ff‘;ﬁﬁ"fi:% ,f" f:\\""\ -— 4 + 2 = 6 inversions
6|8 4 7|2 513 6|8
AN 4 N N 4 N=—splil)«\ }\)'\\ -— 3 inversions
GLILs[{41712 5]]3 SLANEIRE T2 5

Inversion counting by divide and conquer.

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
* Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

HEREEEN GEEEEE

10

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
* Divide: separate list into two pieces.
* Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).
DEDDDN BOENEE oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7, 12-11, 11-3, 11-7

11

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

* Divide: separate list into two pieces.

* Conquer: recursively count inversions in each half.

* Combine: count inversions where a; and a; are in different halves, and
return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DEDDDE BOENEE - oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 277
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total=5+8+9=22.

12

Counting Inversions: Combine

Combine: count blue-green inversions

e Assume each half is sorted.

 Countinversions where a; and a; are in different halves.
* Merge two sorted halves into sorteg whole.

to maintain sorted invariant
BEDDDE BEREEs
6 3 2 2 0 0

13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) < T(Ln/2))+T(In/2])+0M) = T(n)=0(nlogn)

13

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a; and a; are in different halves.

— Combine two sorted halves into sorted whole.
i=6
I

}
3 7 10 14 18 19 2 11 16 17 23 25 twosorted halves

auxiliary array

14

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=6
I

}
3 7 10 14 18 19 11 16 17 23 25 twosorted halves

2 auxiliary array

15

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=6
I

}
3 7 10 14 18 19 2 11 16 17 23 25 twosorted halves

2 auxiliary array

16

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=6

| =
} l
/7 10 14 18 19 2 11 16 17 23 25 two sorted halves

2 3 auxiliary array

17

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=5
| I

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves

2 3 auxiliary array

18

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=5
| I

3 10 14 18 19 2 11 16 17 23 25 two sorted halves

2 3 7 auxiliary array

19

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=4
| I

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves

2 3 7 auxiliary array

20

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=4
| I

3 7 14 18 19 2 11 16 17 23 25 two sorted halves

2 3 7 10 auxiliary array

21

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=3
| I

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves

2 3 7 10 auxiliary array

22

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=3
| I

3 7 10 14 18 19 2 16 17 23 25 two sorted halves

2 3 7 10 11 auxiliary array

23

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=3
J J

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3

2 3 7 10 11 auxiliary array

24

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=3
J J

3 7 10 18 19 2 11 16 17 23 25 two sorted halves
6 3

2 3 7 10 11 14 auxiliary array

25

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

i=2
l l

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3

2 3 7 10 11 14 auxiliary array

26

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=2
| I

3 7 10 14 18 19 2 11 17 23 25 two sorted halves

2 3 7 10 11 14 16 auxiliary array

27

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

i=2
l l

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2

2 3 7 10 11 14 16 auxiliary array

28

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
i=2
| I

3 7 10 14 18 19 2 11 16 23 25 two sorted halves

2 3 7 10 11 14 16 17 auxiliary array

29

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=2
l l

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 auxiliary array

30

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=2
l l

3 7 10 14 19 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 18 auxiliary array

31

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=1
| |

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 18 auxiliary array

32

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=1
| |

3 7 10 14 18 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 18 19 auxiliary array

33

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.

— Combine two sorted halves into sorted whole.
first half exhausted i=0

l l

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2

2 3 7 10 11 14 16 17 18 19 auxiliary array

34

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=0
J J

3 7 10 14 18 19 2 11 16 17 25 two sorted halves
6 3 2 2 0

2 3 7 10 11 14 16 17 18 19 23 auxiliary array

35

Merge and Count

 Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

i=0
J J

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2 0

2 3 7 10 11 14 16 17 18 19 23 auxiliary array

36

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

=0
J J

3 7 10 14 18 19 2 11 16 17 23 two sorted halves
6 3 2 2 0 o

2 3 7 10 11 14 16 17 18 19 23 25 auxiliary array

37

Merge and Count

Merge and count step.

— Given two sorted halves, count number of inversions
where a, and a, are in different halves.
— Combine two sorted halves into sorted whole.

i=0
J J

3 7 10 14 18 19 2 11 16 17 23 25 two sorted halves
6 3 2 2 0 o0

2 3 7 10 11 14 16 17 18 19 23 25 auxiliary array

38

