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Dynamic Programming:
Space Efficient Sequence Alignment

Section 6.7(KT)
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Applications.

• Basis for Unix diff.

• Speech recognition.

• Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty ; mismatch penalty pq.

• Cost = sum of gap and mismatch penalties.
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Sequence Alignment:  
Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

• Case 1:  OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

• Case 2a:  OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

• Case 2b:  OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1
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Sequence Alignment:  Algorithm

• Analysis.  (mn) time and space.
• English words or sentences:  m, n   10.
• Computational biology:  m = n = 100,000. 10 billions ops OK, but 

10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}
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Sequence Alignment:  Linear Space
Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

• Compute OPT(i, •) from OPT(i-1, •).

• No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in 
𝑂(𝑚 + 𝑛) space and 𝑂(𝑚𝑛) time.

• Clever combination of divide-and-conquer and dynamic 
programming.

• Inspired by idea of Savitch from complexity theory.
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Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space
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Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Can compute f (•, j) for any j in O(mn) time and O(m + n) 
space.

Sequence Alignment:  Linear Space
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Space-Efficient Alignment Algorithm
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Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute by reversing the edge orientations and inverting 
the roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space
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Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute g(•, j) for any j in O(mn) time and O(m + n) 
space.

Sequence Alignment:  Linear Space
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Observation 1.  The cost of the shortest path that uses (i, j) is 
f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q

12



Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space
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Theorem.  Let 𝑇(𝑚, 𝑛) = max running time of algorithm on 
strings of length at most 𝑚 and 𝑛. 𝑇(𝑚, 𝑛) = 𝑂(𝑚𝑛 log 𝑛).

Remark.  Analysis is not tight because two sub-problems are of 
size (q, n/2) and (m - q, n/2).  In next slide, we save log 𝑛 factor.

Sequence Alignment:  
Running Time Analysis Warmup

 

T(m, n)    2T(m, n /2)  +  O(mn)      T(m, n)  =  O(mn logn)

14



Theorem.  Let 𝑇(𝑚, 𝑛) = max running time of algorithm on 
strings of length m and n. 𝑇(𝑚, 𝑛) = 𝑂(𝑚𝑛).

Pf.  (by induction on n)
• 𝑂(𝑚𝑛) time to compute 𝑓( •, 𝑛/2) and 𝑔 ( •, 𝑛/2) and find index 

𝑞.
• 𝑇(𝑞, 𝑛/2) + 𝑇(𝑚 − 𝑞, 𝑛/2) time for two recursive calls. 
• Choose constant 𝑐 so that:

• Basis cases: 𝑚 = 2 or 𝑛 = 2. 
• Inductive hypothesis:  𝑇(𝑚, 𝑛) 2𝑐𝑚𝑛.

Sequence Alignment:  
Running Time Analysis
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T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn + T(q, n /2) + T(m − q, n /2)
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Divide-and-Conquer Alignment 
Algorithm

16


