
COMP 355
Advanced Algorithms

Dynamic Programming:
Space Efficient Sequence Alignment

Section 6.7(KT)

1

Applications.

• Basis for Unix diff.

• Speech recognition.

• Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty ; mismatch penalty pq.

• Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance

2

Sequence Alignment:
Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

• Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

• Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

• Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1



OPT (i, j) =






 







j if i = 0

min

xi y j
+ OPT (i −1, j −1)

 + OPT (i −1, j)

 + OPT (i, j −1)









otherwise

i if j = 0

3

Sequence Alignment: Algorithm

• Analysis. (mn) time and space.
• English words or sentences: m, n  10.
• Computational biology: m = n = 100,000. 10 billions ops OK, but

10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}

4

Sequence Alignment: Linear Space
Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

• Compute OPT(i, •) from OPT(i-1, •).

• No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in
𝑂(𝑚 + 𝑛) space and 𝑂(𝑚𝑛) time.

• Clever combination of divide-and-conquer and dynamic
programming.

• Inspired by idea of Savitch from complexity theory.

5

Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0







xi y j

6

Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Can compute f (•, j) for any j in O(mn) time and O(m + n)
space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

7

Space-Efficient Alignment Algorithm

8

Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute by reversing the edge orientations and inverting
the roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0







xi y j

9

Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute g(•, j) for any j in O(mn) time and O(m + n)
space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

10

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

11

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q

12

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n
13

Theorem. Let 𝑇(𝑚, 𝑛) = max running time of algorithm on
strings of length at most 𝑚 and 𝑛. 𝑇(𝑚, 𝑛) = 𝑂(𝑚𝑛 log 𝑛).

Remark. Analysis is not tight because two sub-problems are of
size (q, n/2) and (m - q, n/2). In next slide, we save log 𝑛 factor.

Sequence Alignment:
Running Time Analysis Warmup



T(m, n)  2T(m, n /2) + O(mn)  T(m, n) = O(mn logn)

14

Theorem. Let 𝑇(𝑚, 𝑛) = max running time of algorithm on
strings of length m and n. 𝑇(𝑚, 𝑛) = 𝑂(𝑚𝑛).

Pf. (by induction on n)
• 𝑂(𝑚𝑛) time to compute 𝑓(•, 𝑛/2) and 𝑔 (•, 𝑛/2) and find index

𝑞.
• 𝑇(𝑞, 𝑛/2) + 𝑇(𝑚 − 𝑞, 𝑛/2) time for two recursive calls.
• Choose constant 𝑐 so that:

• Basis cases: 𝑚 = 2 or 𝑛 = 2.
• Inductive hypothesis: 𝑇(𝑚, 𝑛) 2𝑐𝑚𝑛.

Sequence Alignment:
Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

=

+−+=

+−+

+−+



T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn + T(q, n /2) + T(m − q, n /2)

15

Divide-and-Conquer Alignment
Algorithm

16

