
COMP 355
Advanced Algorithms

All-Pairs Shortest Paths
Floyd-Warshall Algorithm

Section 25.2 (CLRS): Not in KT
Network Flows:

Basics & Ford-Fulkerson Algorithm
Section 7.1-7.3 (KT)

1

2

• Generalization of single-source shortest path: computing
shortest path between all pairs of vertices

• Let G = (V, E) be a directed graph with edge weights.

• Find the cost of the shortest path between all pairs of vertices
in G.

All-Pairs Shortest Paths

3

• If no negative weights:

– Run Dijkstra’s with each vertex as the source

– Runtime: O(VE lg V) (if we use binary min-heap
implementation)

• If negative weights, but no negative cycles:

– Run Bellman-Ford algorithm once from each vertex

– Runtime: O(V2E) (on a dense graph = O(V4)

• Can we do better (assuming negative edges)?
– Yes! O(V3) using dynamic programming

Possible Algorithms

4

• Input Format:
– input is an n x n matrix w of edge weights, which are based on the

edge weights in the digraph.

– We let wij denote the entry in row i and column j of w.

• Output Format:
– n x n distance matrix D = dij where dij = δ(i, j), the shortest path from

vertex i to vertex j.

– To recover the actual shortest path, we can compute an auxillary
matrix mid[i, j] where the value of mid[i, j] will be a vertex that is
somewhere along the path from i to j. (null if no such vertex exists)

Input/Output

5

Observations

6

Floyd-Warshall Algorithm

Running Time: Θ(n3)
Space Required: Θ(n2)

7

Proof of Correctness

Def. Name of a variety of related graph optimization problems

Given a flow network, which is essentially a directed graph with
nonnegative edge weights.

• Think of the edges as “pipes” that are capable of carrying
some sort of “stuff.”

• Each edge of the network has a given capacity

• How much flow we can push from a designated source node
to a designated sink node?

Network Flows

9

Maximum Flow and Minimum Cut
Max flow and min cut.

• Two very rich algorithmic problems.

• Cornerstone problems in combinatorial optimization.

• Beautiful mathematical duality.

Nontrivial applications / reductions.

• Data mining.

• Open-pit mining.

• Project selection.

• Airline scheduling.

• Bipartite matching.

• Baseball elimination.

• Image segmentation.

• Network connectivity.

• Network reliability.

• Distributed computing.

• Egalitarian stable matching.

• Security of statistical data.

• Network intrusion detection.

• Multi-camera scene reconstruction.

• And many more . . .

10

• Abstraction for material flowing through the edges.

• G = (V, E) directed graph, no parallel edges.

• Two distinguished nodes: s = source, t = sink.

• c(e) = capacity of edge e. (non-negative)

Flow Network

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

capacity

source sink

11

Given an s-t network, a flow is a function 𝑓 that maps each edge to a
nonnegative real number and satisfies the following properties:

• Capacity Constraint: For all 𝑒 ∈ 𝐸, 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) = 𝑐(𝑒)

• Flow conservation (or flow balance): For all 𝑣 ∈ 𝑉 {𝑠, 𝑡}, the
sum of flow along edges into v equals the sum of flows along

edges out of v. 𝑓𝑖𝑛 𝑣 = 𝑓𝑜𝑢𝑡 𝑣

If edge (𝑢, 𝑣) not in 𝐸, then 𝑓(𝑢, 𝑣) = 0

Flows, Capacities, and Conservation

12

𝑓𝑖𝑛 𝑣 = ෍

𝑢 ∈𝑉

𝑓(𝑢, 𝑣) 𝑓𝑜𝑢𝑡 𝑣 = ෍

𝑤 ∈𝑉

𝑓(𝑣, 𝑤)

Def. An s-t flow is a function that satisfies:

• For each e  E: (capacity)

• For each v  V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0

0

0

Value = 4
0



f (e)
e in to v

 = f (e)
e out of v





0  f (e)  c(e)

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

.)()(
ofout

=
se

effv

4

13

Flows

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

4

14

Def. An 𝑠 − 𝑡 flow is a function that satisfies:

• For each 𝑒  𝐸: (capacity)

• For each 𝑣  𝑉 – {𝑠, 𝑡}: (conservation)

Def. The value of a flow f is:



f (e)
e in to v

 = f (e)
e out of v





0  f (e)  c(e)

.)()(
ofout

=
se

effv

Max flow problem. Find 𝑠-𝑡 flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

15

Define an s-t path to be any simple path from 𝑠 to 𝑡.

Ex. ۦ𝑠, 𝑎, ۧ𝑡 , ,𝑠ۦ 𝑏, 𝑎, ۧ𝑐, 𝑡 and ۦ𝑠, 𝑑, ۧ𝑐, 𝑡 are all examples of
𝑠 − 𝑡 paths.

Def. A path-based flow is a function that assigns each
𝑠 − 𝑡 path a nonnegative real number such that, for

every edge (𝑢, 𝑣) ∈ 𝐸, the sum of the flows on all the
paths containing this edge is at most 𝑐(𝑢, 𝑣).

Path-Based Flows

16

No need to provide a flow conservation constraint (each path
that carries a flow into a vertex (excluding s and t), carries an
equivalent amount of flow out of that vertex)

Path-Based Flows

(a) An edge-based flow and (b) its path-based
equivalent.

17

Def. The value of a path-based flow is defined to be the
total sum of all the flows on all the 𝑠-𝑡 paths of the
network.

Claim: Given an 𝑠-𝑡 network 𝐺, under the assumption
that there are no edges entering 𝑠 or leaving 𝑡, 𝐺 has
an edge-based flow of value 𝑥 if and only if 𝐺 has a
path-based flow of value 𝑥.

Path-Based Flows

18

Multi-source, multi-sink networks

Reduction from (a) multi-source/multi-sink to
(b) single-source/single-sink.

19

Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

20

Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

Flow value = 20

s

1

2

t

20 10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

21

Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality  global optimality

22

Residual Graph
Original edge: 𝑒 = (𝑢, 𝑣)  𝐸.

• Flow 𝑓(𝑒), capacity 𝑐(𝑒).

Residual edge.

• "Undo" flow sent.

• 𝑒 = (𝑢, 𝑣) and 𝑒𝑅 = (𝑣, 𝑢).

• Residual capacity:

Residual graph: 𝐺𝑓 = (𝑉, 𝐸𝑓).

• Residual edges with positive residual capacity.

• 𝐸𝑓 = {𝑒: 𝑓(𝑒) < 𝑐(𝑒)}  {𝑒𝑅 ∶ 𝑐(𝑒) > 0}.

u v11

residual capacity

6
residual capacity

u v17

6

capacity

flow



c f (e) =
c(e)− f (e) if e  E

f (e) if eR  E





23

Residual Graph

24

Augmenting Paths

25

Consider a network 𝐺, let 𝑓 be a flow in 𝐺, and let 𝐺𝑓 be the associated
residual network.
Def. An augmenting path is a simple path 𝑃 from 𝑠 to 𝑡 in 𝐺𝑓 .
Def. The residual capacity (also called the bottleneck capacity) of the path
is the minimum capacity of any edge on the path. It is denoted 𝑐𝑓 (𝑃).

Recall: all the edges of 𝐺𝑓 are of strictly positive capacity, so 𝑐𝑓 (𝑃) > 0.

By pushing 𝑐𝑓 (𝑃) units of flow along each edge of the path, we obtain a
valid flow in 𝐺f , and by the previous lemma, adding this to 𝑓 results in a
valid flow in 𝐺 of strictly higher value.

Augmenting Path Algorithm
Augment(f, c, P) {

b  bottleneck(P)

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge

26

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

27

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow

capacity

28

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

s

2

3

4

5 t10 9

4

1062

Gf:

10 8

10

8 8

8

X X

X

0

Flow value = 0

capacity

residual capacity

flow

29

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

8

0

0

0 0 8

8

0 0

G:

s

2

3

4

5 t10

4

106

Gf:

8

8

8

9

22

2

10

2
10

X

X

X2X

Flow value = 8

30

0

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

0

0 2 10

8

2

G:

s

2

3

4

5 t

4

2

Gf:

10

810

2

10 7

106

X

6
6

6

X

X

8X

Flow value = 10

31

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

6

6 8 10

8

2

G:

s

2

3

4

5 t1

6

Gf:

10

810

8

6

6

6

4

4

4

2

X

8

2

8

X

X

0
X

Flow value = 16

32

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

2

8

8 8 10

8

0

G:

s

2

3

4

5 t

62

Gf:

10

10

8

6

8

8

2

2 1

2

8 2

X

9

7 9

X

X

9X

X 3

Flow value = 18

33

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19

34

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19Cut capacity = 19

35

Def. An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
= 30

A



cap(A, B) = c(e)
e out of A



36

Def. An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Cuts

Capacity = 9 + 15 + 8 + 30
= 62

s



cap(A, B) = c(e)
e out of A



Min 𝑠-𝑡 cut problem. Find an 𝑠-𝑡 cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 10 + 8 + 10
= 28

38

