COMP 355
Advanced Algorithms

All-Pairs Shortest Paths
Floyd-Warshall Algorithm
Section 25.2 (CLRS): Not in KT
Network Flows:

Basics & Ford-Fulkerson Algorithm
Section 7.1-7.3 (KT)

Rhodes College

1848

All-Pairs Shortest Paths

Generalization of single-source shortest path: computing
shortest path between all pairs of vertices

Let G = (V, E) be a directed graph with edge weights.

Find the cost of the shortest path between all pairs of vertices
in G.

Possible Algorithms

* If no negative weights:
— Run Dijkstra’s with each vertex as the source

— Runtime: O(VE Ig V) (if we use binary min-heap
implementation)

* If negative weights, but no negative cycles:
— Run Bellman-Ford algorithm once from each vertex
— Runtime: O(V?E) (on a dense graph = O(V*%)

 Can we do better (assuming negative edges)?

— Yes! O(V3) using dynamic programming

Input/Output

* Input Format:
— input is an n x n matrix w of edge weights, which are based on the
edge weights in the digraph.
— We let w; denote the entry in row / and column j of w.

0 ifi = j.
wij =4 w(i,7) ifi # jand (i, j) € E,
+x ifi=# jand (¢,5) ¢ E

* Qutput Format:
— nxn distance matrix D = d; where d; = &(i, j), the shortest path from
vertex i to vertex j.

— To recover the actual shortest path, we can compute an auxillary
matrix mid[i, j] where the value of mid[i, j] will be a vertex that is
somewhere along the path from i to j. (null if no such vertex exists)

Observations

@ A shortest path does not contain the same vertex more than once.

@ For a shortest path from i/ to j such that any intermediate vertices on
the path are chosen from the set {1.2. ..., k}, there are two
possibilities:

e 1. k is not a vertex on the path,
so the shortest such path has length d;f_l

e 2. k is a vertex on the path,
so the shortest such path is d;i_l—l—dﬁ.}_l

. . k
@ So we see that we can recursively define dd(;) as

i min(dy T T 4 dg Yy ifk>1

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

Floyd Warshall (int n, int w[l..n,

array d[l..n, 1..n]
for i = 1 to n do {
for j = 1 to n do {
dri,j1 = wli,jl
mid[i,]j] = null
}
}

for Kk = 1 to n do
for 1 = 1 to n do
for] = 1 to n do

if (d[i,k] + dlk,]l)

dafi,j] =
mid[i,j]

return d

< df[i,Jl)
dli,k] + dlk,]]

initialize

use intermediates {1..k}
...from 1
...Lo 7

new shorter path length
new path is through k

matrix of distances

Running Time: ©(n3)
Space Required: O(n?)

Proof of Correctness

Inductive Hypothesis

Suppose that prior to the kth iteration it holds that for i,j € V, dj
contains the length of the shortest path Q from i/ to j in G containing only
vertices in the set {1,2,..., k — 1}, and 7;; contains the immediate

predecessor of j on path Q.

all intermediate vertices im (1. 2. 4k = 1} all intermediate vemices in{l, 2..... 4 = 1]

J": bi--.“_-~j‘ N NP

e all intermedinte vertices n {1, 2, &)

Network Flows

Def. Name of a variety of related graph optimization problems

Given a flow network, which is essentially a directed graph with
nonnegative edge weights.

* Think of the edges as “pipes” that are capable of carrying
some sort of “stuff.”

* Each edge of the network has a given capacity

* How much flow we can push from a designated source node
to a designated sink node?

Maximum Flow and Minimum Cut

Max flow and min cut.

* Two very rich algorithmic problems.

* Cornerstone problems in combinatorial optimization.
e Beautiful mathematical duality.

Nontrivial applications / reductions.

Network reliability.

* Data mining. * Distributed computing.
* QOpen-pit mining. .
* Project selection.

* Airline scheduling.

e Bipartite matching.

e Baseball elimination.
* Image segmentation.
* Network connectivity.

Egalitarian stable matching.
e Security of statistical data.

* Network intrusion detection.
* Multi-camera scene reconstruction.
* And many more...

Flow Network

* Abstraction for material flowing through the edges.
e G=(V, E) directed graph, no parallel edges.
 Two distinguished nodes: s =source, t = sink.
* c(e) = capacity of edge e. (non-negative)
g < {\

> j\ \Q(D 10 sink

15
15

capacity - < \Q/
) 4

source s 5

()

10

Flows, Capacities, and Conservation

Given an s-t network, a flow is a function f that maps each edge to a
nonnegative real number and satisfies the following properties:

* Capacity Constraint: Foralle € E, f(u,v) < c(u,v) = c(e)

* Flow conservation (or flow balance): Forallv € V {s,t}, the
sum of flow along edges into v equals the sum of flows along
edgesoutofv. f(v) = foU%(v)

If edge (u,v) notin E, then f(u,v) = 0

fin(v) = Z f(u,v) fo(w) = 2 f(v,w)

uev w eV

Def. An s-t flow is a function that satisfies:

e Foreache eE: 0 < f(e) <c(e) (capacity)
* ForeachveV-{s,t}: 2f(e) = 21(®) (conservation)
eintoVv e out of v
Def. The value of a flow fis: v(f)= > f(e).
Oeoutofs
A
4
0
0) 4 4
5 > 8
"
. 4 0 6
capacity — 15
flow — o0 | "
30

Def. Ans — t flow is a function that satisfies:

* Foreache € E: 0 < f(e) < c(e)
* Foreachv eV - {st}: zt f(e) = ?:(e) (conservation)
Def. The value of a flow fis: v(f)= > f(e).

6eoutofs

capacity — 15

flow — 11
) 4

9

(capacity)

0
15

11
30

Max flow problem. Find s-t flow of maximum value.

10
/ : 1
8
5 »> 8
4
6
capacity — 15

flow — 14 u

0

|
SN e

9
10

9
10

10
10

15

Path-Based Flows

Define an s-t path to be any simple path from s to t.
Ex.{(s,a,t),(s,b,a,c,t)and(s,d,c,t) are all examples of
s — t paths.

Def. A path-based flow is a function that assigns each
s — t path a nonnegative real number such that, for

every edge (u,v) € E,the sum of the flows on all the
paths containing this edge is at most c(u, v).

Path-Based Flows

No need to provide a flow conservation constraint (each path
that carries a flow into a vertex (excluding s and t), carries an
equivalent amount of flow out of that vertex)

=4 8
|

(a) |b)

(a) An edge-based flow and (b) its path-based
equivalent.

17

Path-Based Flows

Def. The value of a path-based flow is defined to be the
total sum of all the flows on all the s-t paths of the
network.

Claim: Given an s-t network G, under the assumption
that there are no edges entering s or leaving t, G has
an edge-based flow of value x if and only if G has a
path-based flow of value x.

(a) (b)

Reduction from (a) multi-source/multi-sink to
(b) single-source/single-sink.

19

Towards a Max Flow Algorithm

Greedy algorithm.
e Start with f(e) =0 for all edge e € E.

* Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
* Repeat until you get stuck.
1
o’////£)\\\\\o

20 10

10 20

30 0
Flow value =0
0 0

Towards a Max Flow Algorithm

Greedy algorithm.

» Start with f(e) =0 for all edge e € E.

* Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.

* Repeat until you get stuck.

1
20 X 0
20 10
30 ¥ 20
10 20

Flow value = 20
: \CZ)/ e

Greedy algorithm.
Start with f(e) =0 for all edge e € E.
Find an s-t path P where each edge has f(e) < c(e).
Augment flow along path P.

Repeat until you get stuck.
N locally optimality L global optimality

Residual Graph

Original edge: e = (u,v) € E. , capaciy

* Flow f(e), capacity c(e). © 17—V
6

Residual edge. N o

e "Undo" flow sent.

re5|dual capacity

« ¢ = (u,v)and ek = (v,u).
* Residual capacity: i /Q
_{c(e)—f(e) if ee £ ™ residual capacity
1@ =1 1) if f c E

Residual graph: G, = (V,E;).
» Residual edges with positive residual capacity.

* E; = {e: f(e) < c(e)} v {ef: c(e) > 0}

esidual Grap

Forward edges: For each edge (u,v) for which f{u,v) < e(u,v), create an edge (u,v) in
'y and assign it the capacity ef(u, v) = e(u,v) — f(u,v). Intuitively, this edge signifies
that we can add up to eg(u, v) additional units of flow to this edge without violating the
original capacity constraint.

Backward edges: For each edge (u,v) for which f(w,v) > 0, create an edge (v,u) in Gy
and assign it a capacity of ef(v,u) = f(u,v). Intuitively, this edge signifies that we can
cancel up to f(u,v) units of flow along (u,v). Coneceptually, by pushing positive flow
along the reverse edge (v,u) we are decreasing the flow along the original edge (u, v).

(a): A flow f in network G (b): Residual network G ¢

A flow f and the residual network Gy.

24

Augmenting Paths

Consider a network G, let f be a flow in G, and let Gf be the associated
residual network.

Def. An augmenting path is a simple path P from s to t in Gf.

Def. The residual capacity (also called the bottleneck capacity) of the path
is the minimum capacity of any edge on the path. It is denoted ¢, (P).

Recall: all the edges of G are of strictly positive capacity, so ¢, (P) > 0.
By pushing ¢, (P) units of flow along each edge of the path, we obtain a

valid flow in G¢, and by the previous lemma, adding this to f results in a
valid flow in G of strictly higher value.

(a): Augmenting path of capacity 3 (b): The flow after augmentation

Augmenting Path Algorithm

Augment (£, c, P) {
b <« bottleneck (P)
foreach e € P {
if (e € E) f(e) « f(e) + b forward edge
else f(e®) « f(e) - b reverse edge

}

return £

Ford-Fulkerson (G, s, t, c) {
foreach e e E f(e) « O
G; < residual graph

while (there exists augmenting path P) ({
f « Augment(f, c, P)
update G

}

return £

Ford-Fulkerson Algorithm

2 4 (4
1 capacity
/

Ford-Fulkerson Algorithm
0 flow
T) ﬂq /" capacit
AT DN
8 60 10
Q/ ; " 0\ o\@
S 10 @ 9 (5 10—

Flow value =0

Ford-Fulkerson Algorithm

AN

(4 flow
/;>\\\\\\\ / capacity
8 0/

Flow value =0

4 . .
Y residual capacity

8 R
10 20 60 10
Q/ 0 v 0\ 8 K \@
s 10 ® 9 -® 10 —
/@\ 4
10 2 8 \j 10
@/ 10 0 9 »(5) 1o>@

29

Ford-Fulkerson Algorithm

N

Flow value = 8

D
? o— >Q\>

Ford-Fulkerson Algorithm

2 4 :\4
G: 10 A\\\\\\S K6
8

10 2 2

6R 10
6
Cj////'m 6 v 2 8 10
S 10 @ 9 (5 10—

Flow value = 10
2 4
Gy: A\\\\\\

10 2

8 6 10
2

31

Ford-Fulkerson Algorithm

R 2

2 4 ~(4
. . /@\ 8 O\K 8
10 2 3 8 66 10
Q/ O \ \@
X 8 ! 8 10
: 10 16, 9 () 10—

Flow value = 16

EARSEN

32

Ford-Fulkerson Algorithm

)¢
2 4 :\4
G: 10/<>\X 7 /\8 S
8

@427@»\ —
8

10
10\@
10—

Flow value = 18
8
|
10 gl)

33

Ford-Fulkerson Algorithm

66 10
O/ 9 v 9 \ 10\@
S 10 @ 9 (5 10—

Flow value = 19

Ford-Fulkerson Algorithm
3
2 4 "4
G: 10/)\7 9
10 20 8 66 10
O/ 9 v 9\ 10\@
: 10 (3 9 -® 10 —

Cut capacity = 19 Flow value =19

Def. An s-t cut is a partition (4,B) of V withs €e Aandt € B.

Def. The capacity of a cut (4,B) is: Cap(A,B) = 2 c(e)
e out of A

™\

15 10

54.<8
Ny

10

10

6
15 10

\.
)

Def. An s-t cut is a partition (4,B) of V withs € Aandt € B.

Def. The capacity of a cut (4, B) is: Cap(A, B) = 2. c(e)
e out of A

Min s-t cut problem. Find an s-t cut of minimum capacity.

