
COMP 355
Advanced Algorithms

All-Pairs Shortest Paths
Floyd-Warshall Algorithm 

Section 25.2 (CLRS): Not in KT
Network Flows: 

Basics & Ford-Fulkerson Algorithm
Section 7.1-7.3 (KT)
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• Generalization of single-source shortest path: computing 
shortest path between all pairs of vertices

• Let G = (V, E) be a directed graph with edge weights.

• Find the cost of the shortest path between all pairs of vertices 
in G. 

All-Pairs Shortest Paths
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• If no negative weights:

– Run Dijkstra’s with each vertex as the source

– Runtime: O(VE lg V) (if we use binary min-heap 
implementation)

• If negative weights, but no negative cycles:

– Run Bellman-Ford algorithm once from each vertex

– Runtime: O(V2E) (on a dense graph = O(V4)

• Can we do better (assuming negative edges)?
– Yes! O(V3) using dynamic programming 

Possible Algorithms
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• Input Format:
– input is an n x n matrix w of edge weights, which are based on the 

edge weights in the digraph.

– We let wij denote the entry in row i and column j of w.

• Output Format:
– n x n distance matrix D = dij where dij = δ(i, j), the shortest path from 

vertex i to vertex j.

– To recover the actual shortest path, we can compute an auxillary
matrix mid[i, j] where the value of mid[i, j] will be a vertex that is 
somewhere along the path from i to j. (null if no such vertex exists)

Input/Output
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Observations
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Floyd-Warshall Algorithm

Running Time: Θ(n3)
Space Required: Θ(n2)
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Proof of Correctness



Def.  Name of a variety of related graph optimization problems

Given a flow network, which is essentially a directed graph with 
nonnegative edge weights.

• Think of the edges as “pipes” that are capable of carrying 
some sort of “stuff.”

• Each edge of the network has a given capacity

• How much flow we can push from a designated source node 
to a designated sink node?

Network Flows
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Maximum Flow and Minimum Cut
Max flow and min cut.

• Two very rich algorithmic problems.

• Cornerstone problems in combinatorial optimization.

• Beautiful mathematical duality.

Nontrivial applications / reductions.

• Data mining.

• Open-pit mining. 

• Project selection.

• Airline scheduling.

• Bipartite matching.

• Baseball elimination.

• Image segmentation.

• Network connectivity.

• Network reliability.

• Distributed computing.

• Egalitarian stable matching.

• Security of statistical data.

• Network intrusion detection.

• Multi-camera scene reconstruction.

• And many more . . .
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• Abstraction for material flowing through the edges.

• G = (V, E) directed graph, no parallel edges.

• Two distinguished nodes:  s = source, t = sink. 

• c(e) = capacity of edge e. (non-negative) 

Flow Network
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Given an s-t network, a flow is a function 𝑓 that maps each edge to a 
nonnegative real number and satisfies the following properties:

• Capacity Constraint: For all 𝑒 ∈ 𝐸, 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) = 𝑐(𝑒)

• Flow conservation (or flow balance): For all 𝑣 ∈ 𝑉 {𝑠, 𝑡}, the 
sum of flow along edges into v equals the sum of flows along 

edges out of v. 𝑓𝑖𝑛 𝑣 = 𝑓𝑜𝑢𝑡 𝑣

If edge (𝑢, 𝑣) not in 𝐸, then 𝑓(𝑢, 𝑣) = 0

Flows, Capacities, and Conservation
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𝑓𝑖𝑛 𝑣 = ෍

𝑢 ∈𝑉

𝑓(𝑢, 𝑣) 𝑓𝑜𝑢𝑡 𝑣 = ෍

𝑤 ∈𝑉

𝑓(𝑣, 𝑤)



Def.  An s-t flow is a function that satisfies:

• For each e  E: (capacity)

• For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       
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Flows
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Def.  An 𝑠 − 𝑡 flow is a function that satisfies:

• For each 𝑒  𝐸: (capacity)

• For each 𝑣  𝑉 – {𝑠, 𝑡}: (conservation)

Def.  The value of a flow f is:       

  

 

f (e)
e in to v

 = f (e)
e out of v
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Max flow problem.  Find 𝑠-𝑡 flow of maximum value.

Maximum Flow Problem
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Define an s-t path to be any simple path from 𝑠 to 𝑡.

Ex. ۦ𝑠, 𝑎, ۧ𝑡 , ,𝑠ۦ 𝑏, 𝑎, ۧ𝑐, 𝑡 and ۦ𝑠, 𝑑, ۧ𝑐, 𝑡 are all examples of 
𝑠 − 𝑡 paths.

Def. A path-based flow is a function that assigns each 
𝑠 − 𝑡 path a nonnegative real number such that, for 

every edge (𝑢, 𝑣) ∈ 𝐸, the sum of the flows on all the 
paths containing this edge is at most 𝑐(𝑢, 𝑣).

Path-Based Flows
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No need to provide a flow conservation constraint (each path 
that carries a flow into a vertex (excluding s and t), carries an 
equivalent amount of flow out of that vertex)

Path-Based Flows

(a) An edge-based flow and (b) its path-based 
equivalent.
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Def. The value of a path-based flow is defined to be the 
total sum of all the flows on all the 𝑠-𝑡 paths of the 
network. 

Claim: Given an 𝑠-𝑡 network 𝐺, under the assumption 
that there are no edges entering 𝑠 or leaving 𝑡, 𝐺 has 
an edge-based flow of value 𝑥 if and only if 𝐺 has a 
path-based flow of value 𝑥.

Path-Based Flows
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Multi-source, multi-sink networks

Reduction from (a) multi-source/multi-sink to 
(b) single-source/single-sink.
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Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Residual Graph
Original edge:  𝑒 = (𝑢, 𝑣)  𝐸.

• Flow 𝑓(𝑒), capacity 𝑐(𝑒).

Residual edge.

• "Undo" flow sent.

• 𝑒 = (𝑢, 𝑣) and 𝑒𝑅 = (𝑣, 𝑢).

• Residual capacity:

Residual graph:  𝐺𝑓 = (𝑉, 𝐸𝑓 ).

• Residual edges with positive residual capacity.

• 𝐸𝑓 = {𝑒: 𝑓(𝑒) < 𝑐(𝑒)}  {𝑒𝑅 ∶ 𝑐(𝑒) > 0}.
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Residual Graph
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Augmenting Paths
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Consider a network 𝐺, let 𝑓 be a flow in 𝐺, and let 𝐺𝑓 be the associated 
residual network.
Def. An augmenting path is a simple path 𝑃 from 𝑠 to 𝑡 in 𝐺𝑓 .
Def. The residual capacity (also called the bottleneck capacity) of the path 
is the minimum capacity of any edge on the path. It is denoted 𝑐𝑓 (𝑃).

Recall: all the edges of 𝐺𝑓 are of strictly positive capacity, so 𝑐𝑓 (𝑃) > 0.

By pushing 𝑐𝑓 (𝑃) units of flow along each edge of the path, we obtain a 
valid flow in 𝐺f , and by the previous lemma, adding this to 𝑓 results in a 
valid flow in 𝐺 of strictly higher value.



Augmenting Path Algorithm
Augment(f, c, P) {

b  bottleneck(P) 

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E  f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Def.  An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:

Cuts
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e out of A


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Def.  An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:
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Min 𝑠-𝑡 cut problem.  Find an 𝑠-𝑡 cut of minimum capacity.

Minimum Cut Problem
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