COMP 355
Advanced Algorithms

NP-Completeness: Reductions
Chapter 8 (KT)

G

Rhodes College

1848 —

Decision Problems/Language recognition: are problems for which the answer is either

yes or no. These can also be thought of as lanmuage recognition problems, assuming that
the input has been encoded as a string. For example:

HC = {G |G has a Hamiltonian cycle}
MST = {{G,c)| G has a MST of cost at most c}.

P: is the class of all decision problems which can be solved in polynomial time. While
MST € P, we do not know whether HC £ P (but we suspect not).

Certificate: is a piece of evidence that allows us to verify in polynomial time that a string
15 in & given language. For example, the langnage HC above, a certificate conld be a

sequence of vertices along the cycle. (If the string is not in the language, the certificate
can be anything.)

IMNP: is defined to be the class of all langnages that can be verified in polvnomial time.
(Formally, it stands for Nondeferministic Polynomial time.) Clearly, P C NP. It is
widely believed that P £ NP.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X<, Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability. If X<, Y and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

Establish equivalence. If X<,Y and Y <, X, we use notation X=,Y.

I

up to cost of reduction

Polynomial-Time Reduction

Suppose we could solve X in polynomial-time. What else could we
solve in polynomial time?

don't confuse with reduces from

/
Reduction. Problem X polynomial reduces to problem Y if arbitrary
instances of problem X can be solved using:

* Polynomial number of standard computational steps, plus
* Polynomial number of calls to oracle that solves problem Y.

T

i < computational model supplemented by special piece
Notation. X< P Y of hardware that solves instances of Y in a single step

Remarks.

* We pay for time to write down instances sent to black box =
instances of Y must be of polynomial size.

Reductions

Suppose we have a subroutine that can solve any instance of problem U in
polynomial time.

Given an input x for the problem H, translate it into an equivalent input x’ for U.
(wherexe€ Hifandonlyifx' € U)

Run subroutine on x’ and output whatever it outputs. If U is solvable in
polynomial time, then so is H.

We assume that the translation module runs in polynomial time. If so, we say we
have a polynomial reduction of problem H to problem U, which is denoted H <, U
(Karp reduction)

subroutine for H

translate —= subroutine for 7 Tl
.LH.___,.-"- I..I

Reducing H to U

3-Colorability and Clique Cover

3-coloring (3Col): Given a graph G, can each of its vertices be labeled with
one of three different “colors”, such that no two adjacent vertices have the
same label (see (a) and (b)).

J-colorable Clique cover (k= 3)

F-colorable no

Clique Cover (CCov): Given a graph G = (V,E) and an integer k, can we
partition the vertex set into k subsets of vertices V,, .. ., V, such that each V,
is a clique of G

3-Colorability and Clique Cover

subroutine for 3-Col

31 has cligue cover (k= 3)

[a)

(&' k)

subroutine for
Clique Cover

Reducing 3Col to CliqueCov

(b)

VS

[N

Proof of 3Col -> Clique Cover

Claim: A graph G = (V, E) is 3-colorable if and only if its complement G= (V,E)
has a clique-cover of size 3. In other words, G € 3Col &= (G, 3) € CCov.

Proof:

(=) If G 3-colorable, then let V,, V,, V; be the three color classes. We claim
that this is a clique cover of size 3 for G, since if u and v are distinct vertices in
V,, then {u, v} € E (since adjacent vertices cannot have the same color) which
implies that {u, v} € E. Thus every pair of distinct vertices in V. are adjacent in
G.

(<) Suppose G has a clique cover of size 3, denoted V,, V,, V. Fori € {1, 2, 3}
give the vertices of Vi color i. We assert that this is a legal coloring for G, since
if distinct vertices u and v are both in V,, then {u, v} € E (since they are in a
common clique), implying that {u, v} € E. Hence, two vertices with the same
color are not adjacent.

Polynomial-time reduction

Definition: We say that a language (i.e. decision problem) L, is
polynomial-time reducible to language L, (written L; < , L,) if
there is a polynomial time computable function f, such that for
allx,x € Lyifandonlyif f(x) € L,.

lemma:IfL; <p,L,andL, € PthenL, € P.
lemma:IfLy < ,L,andL; & PthenlL, & P.

Because the composition of two polynomials is a polynomial, we
can chain reductions together.

lemma:IfL; < pL,andL, <, L;thenl; <, L.

NP-completeness

Definition: A language Lis NP-hard if L" < , L, forall L' € NP.
(Note that L does not need to be in NP.)

Definition: A language L is NP-complete if:
1. L € NP (thatis, it can be verified in polynomial time), and

Z. L is NP-hard (that is, every problem in NP is polynomially
reducible to it).

Lemma: L is NP-complete if
1. L € NP and
2. L' < , L forsome known NP-complete language L'.

All problems in NP IFSAT <p X IfY € NP and SAT <p Y
are reducible to SAT then X is NP-hard then Y is NP-complete

SAT
NP

g b) (®)

11

