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Recap
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Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If X  P Y and Y can be solved in polynomial-time,  
then X can also be solved in polynomial time.

Establish intractability.  If X  P Y and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

Establish equivalence.  If X  P Y and Y  P X, we use notation X  P Y.

up to cost of reduction
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Polynomial-Time Reduction

Suppose we could solve X in polynomial-time. What else could we 
solve in polynomial time?

Reduction.  Problem X polynomial reduces to problem Y if arbitrary 
instances of problem X can be solved using:
• Polynomial number of standard computational steps, plus
• Polynomial number of calls to oracle that solves problem Y.

Notation.  X  P Y. 

Remarks.
• We pay for time to write down instances sent to black box  

instances of Y must be of polynomial size.

don't confuse with reduces from

computational model supplemented by special piece
of hardware that solves instances of Y in a single step
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Reductions
• Suppose we have a subroutine that can solve any instance of problem U in 

polynomial time.

• Given an input x for the problem H, translate it into an equivalent input x′ for U. 
(where x ∈ H if and only if x′ ∈ U )

• Run subroutine on x′ and output whatever it outputs. If U is solvable in 
polynomial time, then so is H.

• We assume that the translation module runs in polynomial time. If so, we say we 
have a polynomial reduction of problem H to problem U, which is denoted H ≤P U 
(Karp reduction)

Reducing H to U
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3-Colorability and Clique Cover
3-coloring (3Col): Given a graph G, can each of its vertices be labeled with 
one of three different “colors”, such that no two adjacent vertices have the 
same label (see (a) and (b)).

Clique Cover (CCov): Given a graph G = (V,E) and an integer k, can we 
partition the vertex set into k subsets of vertices V1, . . . , Vk such that each Vi

is a clique of G
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3-Colorability and Clique Cover

Reducing 3Col to CliqueCov
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Proof of 3Col -> Clique Cover
Claim: A graph G = (V, E) is 3-colorable if and only if its complement ҧ𝐺=  (V, ത𝐸) 
has a clique-cover of size 3. In other words, G ∈ 3Col ⇐⇒ ( ҧ𝐺, 3) ∈ CCov.

Proof: 
(⇒) If G 3-colorable, then let V1, V2, V3 be the three color classes. We claim 
that this is a clique cover of size 3 for ҧ𝐺, since if u and v are distinct vertices in 
Vi, then {u, v} ∉ E (since adjacent vertices cannot have the same color) which 
implies that {u, v} ∈ E. Thus every pair of distinct vertices in Vi are adjacent in 
G. 

(⇐) Suppose ҧ𝐺 has a clique cover of size 3, denoted V1, V2, V3. For i ∈ {1, 2, 3} 
give the vertices of Vi color i. We assert that this is a legal coloring for G, since 
if distinct vertices u and v are both in Vi, then {u, v} ∈ E (since they are in a 
common clique), implying that {u, v} ∉ E. Hence, two vertices with the same 
color are not adjacent.
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Polynomial-time reduction

Definition: We say that a language (i.e. decision problem) 𝐿1 is 
polynomial-time reducible to language 𝐿2 (written 𝐿1 ≤ 𝑃 𝐿2) if 
there is a  polynomial time computable function f, such that for 
all 𝑥, 𝑥 ∈ 𝐿1 if and only if 𝑓(𝑥) ∈ 𝐿2.

Lemma: If 𝐿1 ≤ 𝑃 𝐿2 and 𝐿2 ∈ 𝑃 then 𝐿1 ∈ 𝑃.

Lemma: If 𝐿1 ≤ 𝑃 𝐿2 and 𝐿1 ∉ 𝑃 then 𝐿2 ∉ 𝑃.

Because the composition of two polynomials is a polynomial, we 
can chain reductions together.

Lemma: If 𝐿1 ≤ 𝑃 𝐿2 and 𝐿2 ≤ 𝑃 𝐿3 then 𝐿1 ≤ 𝑃 𝐿3.
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NP-completeness

Definition: A language L is NP-hard if 𝐿′ ≤ 𝑃 𝐿, for all 𝐿′ ∈ 𝑁𝑃. 
(Note that 𝐿 does not need to be in 𝑁𝑃.)

Definition: A language 𝐿 is NP-complete if: 

1. 𝐿 ∈ 𝑁𝑃 (that is, it can be verified in polynomial time), and

2. 𝐿 is NP-hard (that is, every problem in NP is polynomially
reducible to it).

Lemma: 𝐿 is NP-complete if 

1. 𝐿 ∈ 𝑁𝑃 and 

2. 𝐿′ ≤ 𝑃 𝐿 for some known NP-complete language 𝐿′.
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Structure of NPC and reductions
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