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Recap
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Polynomial reduction: L1 ≤P L2 means that there is a polynomial time computable 
function f such that x ∈ L1 if and only if f(x) ∈ L2. A more intuitive way to think 
about this is that if we had a subroutine to solve L2 in polynomial time, then we 
could use it to solve L1 in polynomial time. Polynomial reductions are transitive, 
that is, L1 ≤P L2 and L2 ≤P L3 implies L1 ≤P L3.

NP-Hard: L is NP-hard if for all L′ ∈ NP, L′ ≤P L. By transitivity of ≤P , we can say that 
L is NP-hard if L′ ≤P L for some known NP-hard problem L′.

NP-Complete: L is NP-complete if (1) L ∈ NP and (2) L is NP-hard.

It follows from these definitions that:
• If any NP-hard problems is solvable in polynomial time, then every NP-complete 
problem (in fact, every problem in NP) is also solvable in polynomial time.
• If any NP-complete problem cannot be solved in polynomial time, then every 
NP-complete problem (in fact, every NP-hard problem) cannot be solved in 
polynomial time.
Thus all NP-complete problems are equivalent to one another (in that they are 
either all solvable in polynomial time, or none are).



Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional
formula  that is the conjunction of clauses.

SAT:  Given CNF formula , does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  

 

C j = x1  x2  x3

  

 

xi   or  xi

  

 

 =  C1  C2  C3  C4

 

x1  x2  x3( )  x1  x2  x3( )  x2  x3( )  x1  x2  x3( )
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Cook’s Theorem: SAT is NP-complete.

SAT is in NP: We non-deterministically guess truth values to the variables. We 
can then plug the values into the formula and evaluate it. Clearly, this can be 
done in polynomial time.

SAT is NP-Hard: 

1. Every NP-problem can be encoded as a program that runs in polynomial 
time on a given input, subject to a number of nondeterministic guesses. 

2. We can express its execution on a specific input as straight-line program 
that contains a polynomial number of lines of code.

3. Compile each line of code into machine code, and convert each machine 
code instruction into an equivalent boolean circuit

4. Express each of these circuits equivalently as a boolean formula.

Cook’s Theorem Justification
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Independent Set
INDEPENDENT SET:  Given an undirected graph G = (V, E) and an integer k, is 

there a subset of vertices S  V such that |S|  k, and for each edge at most 

one of its endpoints is in S?

Ex.  Is there an independent set of size  6?  Yes.

Ex.  Is there an independent set of size  7?  No.

independent set
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Claim: IS is NP-complete.

1. IS ∈ NP

2. IS is NP-Hard

NP-Completeness Proof

(a) Reduction of 3-SAT to IS
(b) Clause clusters for the clauses (𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3) ∧ ( ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥4).
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3 Satisfiability Reduces to Independent Set
Claim.  3-SAT  P INDEPENDENT-SET.

Pf.  Given an instance  of 3-SAT, we construct an instance (G, k) of 
INDEPENDENT-SET that has an independent set of size k iff  is satisfiable.

Construction.

• Set 𝑘 = # of clauses in 

• G contains 3 vertices for each clause, one for each literal.

• Connect 3 literals in a clause in a triangle.

• Connect literal to each of its negations.

  

 

x2

  

 

  =  x1  x2  x3( )  x1  x2  x3( )  x1  x2  x4( )

  

 

x3

  

 

x1

  

 

x1   

 

x2   

 

x4

  

 

x1  

 

x2

  

 

x3

k = 3

G
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3 Satisfiability Reduces to Independent Set
Claim.  G contains independent set of size k = || iff  is satisfiable.

Pf.   Let S be independent set of size k.

S must contain exactly one vertex in each triangle.

Set these literals to true.

Truth assignment is consistent and all clauses are satisfied.

Pf  Given satisfying assignment, select one true literal from each triangle. 
This is an independent set of size k.  ▪

  

 

x2   

 

x3

  

 

x1

  

 

x1   

 

x2   

 

x4

  

 

x1  

 

x2

  

 

x3

k = 3

G

and any other variables in a consistent way

  

 

  =  x1  x2  x3( )  x1  x2  x3( )  x1  x2  x4( )
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Reduce this 3SAT to IS

What does 𝑘 need to be?

What does the graph look like?

3SAT to IS reduction
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• Every NP-complete problem has three similar elements: 
a) something is being selected

b) something is forcing us to select a sufficient number of such things 
(requirements)

c) something is limiting our ability to select these things (restrictions). 

A reduction’s job is to determine how to map these similar elements to 
each other.

• Our reduction did not attempt to solve the 3SAT problem. 

• Remember this rule! If your reduction treats some entities 
different than others, based on what you think the final 
answer may be, you are very likely making a mistake. 

• Remember, these problems are NP-complete!

A few things about this reduction
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Updated Picture of NP-Completeness

• By Cook’s Theorem, we know that every problem in NP is reducible to 3SAT

• When we showed that IS ∈ NP, it followed immediately that IS ≤P 3SAT.

• When we showed that 3SAT ≤P IS, we established their equivalence .

• By transitivity, it follows that all problems in NP are now reducible to IS
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Practice

(CLRS 34.5-8) In the half 3-SAT problem, we are given a 
3-SAT formula F with n variables and m clauses, where 
m is even. We wish to determine whether there exists a 
truth assignment to the variables of F such that exactly 
half the clauses evaluate to False (0) and exactly half 
the clauses evaluate to True (1). 

Prove that the half 3-SAT problem is NP-complete. 

1. Half 3-SAT ∈ NP

2. Half 3-SAT ∈ NP-Hard
Use: 3-SAT  P Half 3-SAT
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