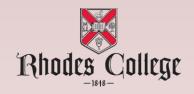
COMP 355 Advanced Algorithms

Independent Set, Clique, and Vertex Cover
Chapter 8 (KT)
Section 34.5(CLRS)



Practice

(CLRS 34.5-8) In the **half 3-SAT** problem, we are given a 3-SAT formula f with **n** variables and **m** clauses, where m is even. We wish to determine whether there exists a truth assignment to the variables of f such that exactly half the clauses evaluate to False (0) and exactly half the clauses evaluate to True (1).

Prove that the half 3-SAT problem is NP-complete.

- 1. Half 3-SAT \in NP
- 2. Half 3-SAT \in NP-Hard Use: 3-SAT \leq_{P} Half 3-SAT

Some NP-Complete Problems

Clique (CLIQUE): Given an undirected graph G = (V, E) and an integer k, does G have a subset V' of k vertices such that for each distinct $u, v \in V'$, $(u, v) \in E$.

- Does G have a *k* vertex subset whose induced subgraph is complete (a clique)?

Vertex Cover (VC): A vertex cover in an undirected graph G = (V,E) is a subset of vertices $V' \subseteq V$ such that every edge in G has at least one endpoint in V'.

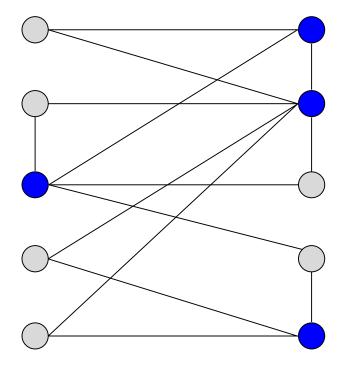
- Given an undirected graph G and an integer k, does G have a vertex cover of size k?

[Recall] Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size \geq 6? Yes.

Ex. Is there an independent set of size ≥ 7 ? No.



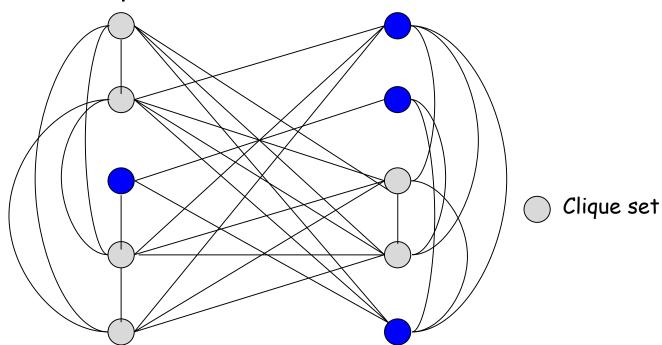
independent set

Clique

CLIQUE: Given an undirected graph G = (V, E) and an integer k, does G have a subset V' of k vertices such that for each distinct u, $v \in V'$, $(u, v) \in E$.

Ex. Is there an clique set of size \geq 6? Yes.

Ex. Is there an clique set of size ≥ 7 ? No.

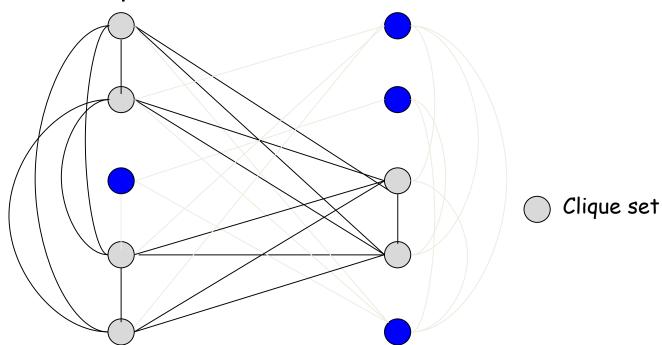


Clique

CLIQUE: Given an undirected graph G = (V, E) and an integer k, does G have a subset V' of k vertices such that for each distinct u, $v \in V'$, $(u, v) \in E$.

Ex. Is there an clique set of size \geq 6? Yes.

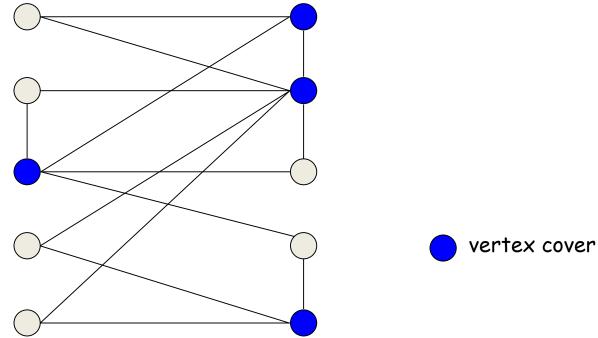
Ex. Is there an clique set of size ≥ 7 ? No.



Vertex Cover

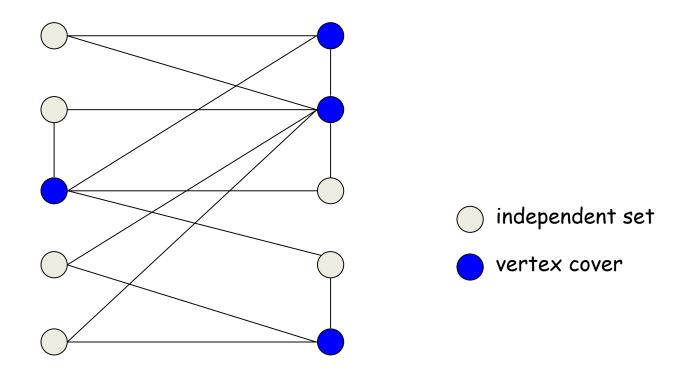
VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size ≤ 4? Yes.
- Ex. Is there a vertex cover of size \leq 3? No.

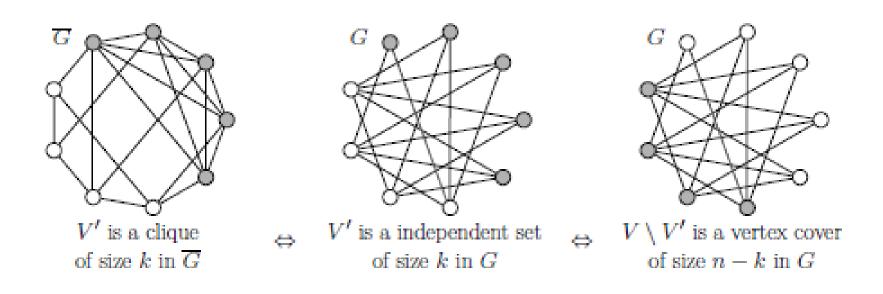


Vertex Cover and Independent Set

- Claim. VERTEX-COVER \equiv_{P} INDEPENDENT-SET.
- Pf. We show S is an independent set iff V S is a vertex cover.



Clique, Independent set, and Vertex Cover



Clique, Independent Set, and Vertex Cover

Lemma: Given an undirected graph G = (V, E) with n vertices and a subset $V' \subseteq V$ of size k. The following are equivalent:

- i. V' is a clique of size k for the complement, G
- ii. V'is an independent set of size k for G
- iii. $V \setminus V'$ is a vertex cover of size n k for G, (where n = |V|)

Proof:

- (i) \Rightarrow (ii): If V' is a clique for G, then for each u, $v \in V'$, $\{u, v\}$ is an edge of G implying that $\{u, v\}$ is not an edge of G, implying that V' is an independent set for G.
- (ii) \Rightarrow (iii): If V' is an independent set for G, then for each u, v \in V', {u, v} is not an edge of G, implying that every edge in G is incident to a vertex in V \ V', implying that V \ V' is a vertex cover for G.
- (iii) \Rightarrow (i): If V \ V' is a vertex cover for G, then for any u, v \in V' there is no edge $\{u, v\}$ in G, implying that there is an edge $\{u, v\}$ in G, implying that V' is a clique in G.

CLIQUE is NP-Complete

Theorem: CLIQUE is NP-complete.

CLIQUE \in **NP:** We guess the k vertices that will form the clique. We can easily verify in polynomial time that all pairs of vertices in the set are adjacent (e.g., by inspection of $O(k^2)$ entries of the adjacency matrix).

IS $\leq_{\mathbf{p}}$ **CLIQUE:** We want to show that given an instance of the IS problem (G, k), we can produce an equivalent instance of the CLIQUE problem in polynomial time. The reduction function f inputs G and K, and outputs the pair (\bar{G}, k) . Clearly this can be done in polynomial time. By the above lemma, this instance is equivalent.

VC is NP-complete

Theorem: VC is NP-complete.

VC ∈ NP: The certificate consists of the k vertices in the vertex cover. Given such a certificate we can easily verify in polynomial time that every edge is incident to one of these vertices.

IS \leq_{P} **VC:** We want to show that given an instance of the IS problem (G, k), we can produce an equivalent instance of the VC problem in polynomial time. The reduction function f inputs G and k, computes the number of vertices, n, and then outputs (G, n – k). Clearly this can be done in polynomial time.