COMP 355

Advanced Algorithms

Approximation Algorithms: VC and TSP
Chapter 11 (KT)
Section 35.1-35.2(CLRS)

G

Rhodes College

1848 —

Coping with NP-Completeness

Brute-force search: Viable option for small input sizes (e.g., n <
20).

Heuristics: Produces a valid solution, but no guarantee on how
close it is to optimal.

General Search Algorithms: Examples: branch-and-bound,
Metropolis-Hastings, simulated annealing, and genetic
algorithms. Performance varies considerably from one problem
to problem and instance to instance. But in some cases they can
perform quite well.

Approximation Algorithms: Algorithm that runs in polynomial
time (ideally), and produces a solution that is guaranteed to be
within some factor of the optimum solution.

Approximation Algorithms

Q. Suppose | need to solve an NP-hard problem. What should | do?

A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
* Solve problem to optimality.
* Solve problem in poly-time.
e Solve arbitrary instances of the problem.

p-approximation algorithm.

 Guaranteed to run in poly-time.

 Guaranteed to solve arbitrary instance of the problem

* Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution's value is close to optimum,
without even knowing what optimum value is!

Performance Bounds

How do we measure how good an approximation algorithm is?

e Given an instance | of our problem, let C(l) be the cost of the
solution produced by our approximation algorithm, and let
Cx(l) be the optimal solution. (assume that costs are strictly
positive values.)

— For a minimization problem we have C(I)/Cx(l) > 1.
— For a maximization problem we have Cx(l)/C(l) > 1.
— In either case, we want the ratio to be as small as possible.

* For any input size n, we say that the approximation algorithm
achieves performance ratio bound p(n), if for all I, ||| = n we

have: o ~
. ({rrlrfl |:: "‘If.‘|> P
]tl}l}a (1) O < pl(n).

Performance Bounds

Some NP-complete are inapproximable: no polynomial
time algorithm achieves a ratio bound smaller than

unless P = NP.

Some NP-Complete can be approximated:
e Ratio bound is a function of n.

e Ratio bound is a constant.

* Approximated arbitrarily well. In particular, the user
provides a parameter € > 0 and the algorithm
achieves a ratio bound of (1+¢€). Of course, as €
approaches 0 the algorithm’s running time gets
worse. If such an algorithm runs in polynomial time
for any fixed g, it is called a polynomial time
approximation scheme (PTAS).

Vertex Cover

There is an algorithm for vertex cover with a ratio bound of 2.

This algorithm will be guaranteed to find a vertex cover whose
size is at most twice that of the optimum.

Recall that a vertex cover is a subset of vertices such that
every edge in the graph is incident to at least one of these
vertices.

The vertex cover optimization problem is to find a vertex

cover of minimum size Q—@ Optimal (k = 4)

Vertex cover (optimal solution)

2-for-1 Approcamation for VO

two—-for-one-VC{G=({V,E})} {

C = empty
while (E is nonempty} do {
(=} let {(u,v} be any edge of E

add both u and v to C
remove from E all edgesz incident to either u or v

}

return C

2-for-1 Approximation for VC

Claim: The 2-for-1 approximation for VC achieves a performance
ratio of 2.

Proof: returns a vertex cover for (¢ that is at most twice the size of the optimal vertex cover,
Consider the set C' output by two-for-one-VC((). Let C* be the optimum vertex cover.
Let A be the set of edges selected by the line marked with *(%)” in the code fragment.,
Because we add both endpoints of each edge of A to ', we have |C| = 2|A|. However,
the optimum vertex cover C* must contain at least one of these two vertices. Therefore,
we have || = |A|. Therefore

LS] I

Cl = 2|4| < 2|C7 '
€] = 2]4] < 2| > g S

as desired.

Reductions and Approximations

Approximation factors are not generally preserved by transformations.

Example: Recall that if V' is a vertex cover for G, then the complement
vertex set, V' \ V', is an independent set for G.

Suppose that G has n vertices, and a minimum vertex cover V' of size k.
Then our heuristic is guaranteed to produce a vertex cover V'’ that is of
size at most 2k.

If we consider the complement set V' \ I/, we know that G has a maximum
independent set of sizen — k.

By complementing our approximation V \ V" we have an “approximate”
independent set of sizen — 2k.

How good is this? n—k

n — 2k

Performance ratio: AT k) =

The problem is that this ratio may be arbitrarily large. For example,
ifn = 1001 and kK = 500, then the ratiois 501/(1001 — 1000)

~y
~y

500/1 = 500.

Traveling Salesman Problem

Traveling Salesperson Decision Problem (TSP) - Given a complete undirected
graph with nonnegative edge weights, does there exist a cycle that visits all
vertices and costs <= k?

* Let w(u, v) denote the weight on edge (u, v).

* Given a set of edges A forming a tour we define W(A) to be the sum of
edge weights in A.

BRUTE-FORCE DYNAMIC .
SOL.UTTON: PROGRAMMING SELLUNG ON ERAY:
. O (n‘lzﬂ)
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE

HELW UF

11

Traveling Salesman with Triangle Inequality

Traveling Salesperson Optimization Problem (TSP) - Given a complete undirected
graph with nonnegative edge weights, and find a cycle that visits all vertices and is
of minimum cost.

* Let w(u, v) denote the weight on edge (u, v).

* Given a set of edges A forming a tour we define W(A) to be the sum of edge
weights in A.

Many of the applications of TSP, the edge weights satisfy a property called the
triangle inequality

forallu,v,x €V, w(u, v) £w(u, x) + w(x, v).

When the underlying cost function satisfies the triangle inequality there is an
approximation algorithm for TSP with a ratio-bound of 2.

 The key insight is to observe that a TSP with one edge removed is just a
spanning tree (not necessarily a MST).

* Cost of the minimum TSP tour is at least as large as the cost of the MST

* If we can find some way to convert the MST into a TSP tour while increasing its
cost by at most a constant factor, then we will have an approximation for TSP

* |f edge weights satisfy triangle inequality, this is possible.

Traveling Salesman with Triangle Inequality

TSP Approximation

approx-TSP(G=(V,E)} {

T = minimum spanning tree for G

r = any vertex

H = list of wvertices visited by a preorder walk of T starting at r
return L

MST Twice-around tour shortcut tour Optimum tour

TSP Approximation

13

Approx-TSP Performance Ratio

Claim: Approx-TSP achieves a performance ratio of 2.

Proof: Let H denote the tour produced by this algorithm and let H* be the optimum tour.
Let T be the minimum spanning tree. As we said before, since we can remove any edge
of H* resulting in a spanning tree, and since T is the minimum cost spanning tree we
have

W(T) = W(H").

Now observe that the twice around tour of T has cost 2. W(T'), since every edge in T is
hit twice. By the triangle inequality, when we short-cut an edge of T to form H we do
not increase the cost of the tour, and so we have

W(H) < 2.-W(T).
Combining these we have

W (H)

¥ - 2. W - 2. W(H? =
WH) = 2-WT) = 2-WH) = 3775,

|
b

as desired.

14

Practice

1. Give an example of a graph for which the 2-for-1 VC algorithm
vields a suboptimal solution.

2. We know that both the VERTEX COVER problem and the
CLIQUE problem are NP-Complete, and as we showed previously,
they are complementary in the sense that a minimum-size vertex
cover is the complement of a maximume-size clique in the
complementary graph.

Given the 2-for-1 VC algorithm, does the above relationship
imply that there is a polynomial-time approximation algorithm
with a constant approximation-ratio for the CLIQUE problem?

