COMP 355
Advanced Algorithms

Algorithm Design Review:
Mathematical Background

1Gid

Rhodes College

1848 —

Stable Matching

GALE-SHAPLEY (preference lists for hospitals and students)

INITIALIZE M to empty matching.
WHILE (some hospital / is unmatched and hasn’t proposed to every student)

s < first student on /’s list to whom / has not yet proposed.

IF (s 1s unmatched)

Add h—s to matching M. _Hospitals ' ' Students
Atlanta Boston Chicago Xavier Yolanda Zeus
ELSE IF (s prefers & to current partner h') vy Y 7 C C A
Replace h'—s with A—s in matching M. . z Y B A B
Z X X A B C
ELSE
s rejects h. A< . X

B Y
C:><‘Z

RETURN stable matching M.

COMP 355: Advanced Algorithms 2

Polynomial Running Time

Brute force. For many non-trivial problems, there is a natural
brute force search algorithm that checks every possible
solution.

—Typically takes 2N time or worse for inputs of size N.

\'n! for stable matching

—Unacceptable in practice. with n hospitals and

n students

Desirable scaling property. When the input size doubles, the
algorithm should only slow down by some constant factor c.

There exists constants ¢ > 0 and d > O such that on every
input of size n, its running time is bounded by c nd steps.

Def. An algorithm is poly-time if the above scaling property
holds.

Worst-Case Analysis

Worst case running time. Obtain bound on largest

possible running time of algorithm on input of a given

size N.

—Generally captures efficiency in practice.

—Draconian view, but hard to find effective
alternative.

Average case running time. Obtain bound on running

time of algorithm on random input as a function of

input size N.

—Hard (or impossible) to accurately model real
instances by random distributions.

—Algorithm tuned for a certain distribution may
perform poorly on other inputs.

Worst-Case Polynomial Time

An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

— Although 6.02 x 10%3 x N?0 is technically poly-time, it would be useless
in practice.

— In practice, the poly-time algorithms that people develop almost
always have low constants and low exponents.

— Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions.

— Some poly-time algorithms do have high constants and/or exponents,
and are useless in practice.

— Some exponential-time (or worse) algorithms are widely used because
the worst-case instances seem to be rare.

Big-O Notation

* Asymptotic O-notation (“big-O”) provides a way to
simplify the messy functions that often arise in
analyzing the running times of algorithms

* Allows us to ignore less important elements
(constants)

* Focus on important issues (growth rate for large
values of n)

13n?log’ n + 12nlogn + 52nlogn

fi(n)

O(n*logn)

=
fa(n) = 150+ Tnlog™n e O(n?)
fa(n) = 3n+4log;n + 91n? e O(n?).

Formal Definition Big-O

* Formally, f(n)is O(g(n)) if there exist constants c >
0 and n, 2 0 such that, f(n) < c - g(n), for all n = n,,.

* Thus, big-O notation can be thought of as a way
of expressing a sort of fuzzy “<” relation between
functions, where by fuzzy, we mean that constant
factors are ighored and we are only interested in
what happens as n tends to infinity.

Intuitive Form of Big-O
f(n)

(n)is0(gn))if lim ——= = c, for some constant ¢ = 0.
f (9m)if Jim os=cf

For example, if f(n) = 15n? + 7n log® n and g(n) = n?, we have f(n) is O(g(n)) because

. f(n) _ 15n2 + Tnlog® n _ 1572 Tnlog®n
lim = lim = lim — + 5

n—oo g (ﬂ] Fl— 30 Tt 2 Ti—F OO0 (o mn

—,]_{}_3__
= lim (1.5-|— 708 n) = 15.

M— %0 i)

In the last step of the derivation, we have used the important fact that log n raised to
any positive power grows asymptotically more slowly than n raised to any positive
power.

(logn)°

e Fora,b >0, 73_1_1330 5= 0 (polynomials grow faster than polylogs).
L
e Fora>0and b > 1, lim :Ta = 0 (exponentials grow faster than polynomials).
— OO0

1
e For a,b > 1, lim PSa T
n—oo]ngﬂ

= ¢ # 0 (logarithm bases do not matter).

mn

e For 1 <a <b, lim Z =0 (exponent bases do matter).

n—oo b

COMP 355: Advanced Algorithms 9

Survey of Common Running Times

e Linear Time: O(n)

* Linearithmic Time: O(n log n)
e Quadratic Time: O(n?)

* Cubic Time: O(n3)

* Polynomial Time: O(nk)

* Exponential Time: O(Z"k)

Comparison o! Running Times

Time (T) exponential
quadratic
linear

logarithmic

constant

Y

Input size (n)

COMP 355: Advanced Algorithms 11

Other Asymptotic Forms

* Big-O has a number of relatives, which are
useful for expressing other sorts of relations.

 More on these next time!

ué]
Rhodes College

88888

Summations

Naturally arise in analysis of iterative algorithms

More complex forms of analysis, such as
recurrences, are often solved by reducing to
summations

Solving a summation means reducing it to a
closed-form formula

— No summations, recurrences, integrals, or other
complex operators

Often don’t need to solve a summation exactly to
find the asymptotic approximation

Summations with general bounds: When a summation does not start at the 1 or 0, as
most of the above formulas assume, you can just split it up into the difference of two

summations. For example, for 1 <a <¥b

b b a—1
Y @) = > fE) =) fi)
i=a i=0

i=0

COMP 355: Advanced Algorithms 14

Linearity of Summation: Constant factors and added terms can be split out to make
summations simpler.

d (A+3i(i—2) =) 443 —6i = > 4+3) i*—6) i

Apply the formulas to each summation individually.

COMP 355: Advanced Algorithms 15

Approximate using integrals: Integration and summation are closely related. (Integra-
tion is in some sense a continuous form of summation.) Here is a handy formula. Let

f(z) be any monotonically increasing function (the function increases as x increases).

n n) n+1
[t < S50 < [s

i=1

COMP 355: Advanced Algorithms 16

Example: Previous Larger Element

Given a sequence of numeric values, <a,, a,, ..., a,>. For each element a, for 1 <i
< n, we want to know the index of the rightmost element of the sequence <a,, a,, ..
., a;_1> whose value is strictly larger than a;. If no element of this subsequence is
larger than a, then, by convention, the index will be 0. (Or, if you like, you may
imagine that there is a fictitious sentinel value a, = ©.) More formally, for 1 <i<n,
define p; to be p; = max{j | 0 <j <iand a; > a;}, where a, = o (see Fig. 2).

o0 A o0 ']

L T ELD

ag a] a2 a3 a4 a5 ag a7 ag agayy ag 4] a9 ag a4 as ag a7 ag agaiQ
pli] : (0 3 44 40 8 8

Fig. 2: Example of the previous larger element problem.

Naive Algorithm For Previous
Larger Element

Previous Larger Element (Naive Solution)

// Input: An array of numeric values ali..n]
// Returns: An array pll..n] where pl[il contains the index of the previous
// larger element to al[i], or 0 if no such element exists.
previousLarger(ali..n]) {

for (i = 1 to n)

j o= i-1;
while (j > 0 and alj] <= alil) j--;
plil = j;
}
return p
}
n i—1 n—1
T'(n) = ZZl = 14+2+...+(n—-2)+(n—1) = i
i=1 j=0 i—1
T(n) = EEE——ﬁ—EJEE.

COMP 355: Advanced Algorithms 18

Recurrences

Arise naturally in analysis of divide-and-conquer
algorithms

Divide: Divide the problem into two or more sub-
problems (ideally of roughly equal sizes)

Conquer: Solve each sub-problem recursively

Combine: Combine the solutions to the sub-
problems into a single global solution.

Recurrences

To analyze recursive procedures such as divide-
and-conquer, we need to set up a recurrence.

Example: Suppose we break a problem into two
sub-problems, each of size roughly n/2.

Additional overhead of splitting and merging the
solutions is O(n).

When sub-problems are reduced to size 1, we can
solve them in O(1) time.

lgnoring constants and writing O(n) as n, we get:
T(n)=1ifn=1,
T(n) =2T(n/2)+nifn>1

Example Problem

e Use mathematical induction to show that
when n is an exact power of 2, the solution of
the recurrence

2, if n=2,

T(n) = ZT(_)+n; ifnzzk,f0rk>1

isT(n)=nlgn

* Other Asymptotic Forms
* Read Section 2.2

COMP 355: Advanced Algorithms

O
Rhodes College

—1818—
22

