
COMP 355
Advanced Algorithms

Subset-Sum 
Sections 6.4 & 8.8(KT)

Section 35.5(CLRS)

1



Subset Sum (SS): Given a finite set 𝑆 of positive integers 
𝑆 = {𝑤1, 𝑤2, . . . , 𝑤𝑛} and a target value, 𝑡, we want to know 
whether there exists a subset 𝑆′ ⊆ 𝑆 that sums exactly to 𝑡.

Example:

𝑆 = {3, 6, 9, 12, 15, 23, 32} and 𝑡 = 33.

The subset 𝑆’ = {6, 12, 15} sums to 𝑡 = 33, so the answer in 
this case is yes. If 𝑡 = 34, the answer would be no.

2

Subset Sum Problem



0-1 Knapsack Problem: Given a collection of objects, each with 
an associated weight 𝑤𝑖 and associated value 𝑣𝑖, and a knapsack 
capacity 𝑊, fill the knapsack in such a way as to maximize the 
value of the objects without exceeding 𝑊 (capacity). 

Simplest version: Suppose that the value is the same as the 
weight, 𝑣𝑖 = 𝑤𝑖. (This would occur for example if all the objects 
were made of the same material, say, gold.) 

Then, the best we could hope to achieve would be to fill the 
knapsack entirely. (Set 𝑡 = 𝑊) (equivalent to Subset Sum)

3

Recall 0-1 Knapsack



• There is a dynamic programming algorithm which solves the Subset Sum 
problem in O(n · t) time.

• The quantity n · t is a polynomial function of n.

– Seems to imply what?

Recall that in all NP-complete problems we assume:

1. Running time is measured as a function of input size (number of bits)

2. Inputs must be encoded in a reasonable succinct manner

• Let us assume that the numbers wi and t are all b-bit numbers represented 
in base 2, using the fewest number of bits possible. 

• Then the input size is O(nb). The value of t may be as large as 2b. 

• Resulting algorithm has a running time of O(n2b). (polynomial in n, but 
exponential in b.) 

• We will show that in the general case, this problem is NP-complete.

4

Dynamic Programming Solution



The proof that Subset Sum (SS) is NP-complete involves the usual 
two elements.

i. SS ∈ NP.

ii. Some known NP-complete problem is reducible to SS. In 
particular, we will show that Vertex Cover (VC) is reducible to 
SS, that is, VC ≤P SS.

SS ∈ NP. Given S and t, the certificate is just the indices of the 
numbers that form the subset S′. We can add two b-bit numbers 
together in O(b) time. So, in polynomial time we can compute 
the sum of elements in S′, and verify that this sum equals t.

5

SS is NP-complete



Here is an idea, which does not work, but gives a sense of how 
to proceed.

6

An Initial Approach

Encoding a graph as a collection of bit vectors. The logical-or of a vertex cover equals 1111 . . . 1.

Let E denote the number of edges in the graph. 
1. Number the edges of the graph from 1 through E. 
2. Represent each vertex vi as an E-element bit vector, 

where the j-th bit from the left is set to 1 if and 
only if the edge ej is incident to vertex vi. 

Take any subset of vertices and form the logical-or of the 
corresponding bit vectors. 
• If the subset is a vertex cover, every edge will be covered 

by at least one of these vertices, (logical-or will be a bit 
vector of all 1’s, 1111 . . . 1)

• Conversely, if the logical-or is a bit vector of 1’s, then 
each edge has been covered by some vertex, implying 
that the vertices form a vertex cover



Given the graph 𝐺 = (𝑉, 𝐸) and integer 𝑘 for the vertex cover problem.

1. Create a set of 𝑛 vertex values, 𝑥1, 𝑥2, . . . , 𝑥𝑛 using base-4 notation. 
The value 𝑥𝑖 is equal to a 1 followed by a sequence of 𝐸 base-4 
digits. The 𝑗-th digit is a 1 if edge 𝑒𝑗 is incident to vertex 𝑣𝑖 and 0 
otherwise. 

2. Create 𝐸 slack values 𝑦1, 𝑦2, . . . , 𝑦𝐸, where 𝑦𝑖 is a 0 followed by 
𝐸 base-4 digits. The 𝑖-th digit of 𝑦𝑖 is 1 and all others are 0. 

3. Let 𝑡 be the base-4 number whose first digit is 𝑘 (this may actually 
span multiple base-4 digits), and whose remaining 𝐸 digits are all 2.

4. Convert the 𝑥𝑖’s, the 𝑦𝑗 ’s, and 𝑡 into whatever base notation is used 
for the subset sum problem (e.g. base 10). Output the set 
𝑆 = {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝐸} and 𝑡.

Observe that this can be done in polynomial time, in 𝑂(𝐸2), in fact.

7

The Final Reduction



8

VC to SS Reduction

Vertex cover to subset sum reduction.

81,920

87,040

66,817

65,621

65,540

69,648

65,856

16,384

4,096

1,024

256

64

16

4

1

240, 298



9

Correctness of the Reduction
81,920

87,040

66,817

65,621

65,540

69,648

65,856

16,384

4,096

1,024

256

64

16

4

1

240, 298

In our dynamic programming solution W = t, so the DP algorithm would run in Ω(n4n) 
time, which is not polynomial time.



We claim that G has a vertex cover of size k iff S has a subset that sums to t.

 If 𝐺 has a vertex cover 𝑉′ of size 𝑘, then we take the vertex values 𝑥𝑖
corresponding to the vertices of 𝑉′, and for each edge that is covered only 
once in 𝑉′, we take the corresponding slack variable. It follows from the 
comments made earlier that the lower-order 𝐸 digits of the resulting sum will 
be of the form 222 . . . 2 and because there are k elements in 𝑉′, the leftmost 
digit of the sum will be 𝑘. Thus, the resulting subset sums to 𝑡.

 If 𝑆 has a subset 𝑆′ that sums to 𝑡 then we assert that it must select exactly 
𝑘 values from among the vertex values, since the first digit must sum to 𝑘. We 
claim that these vertices 𝑉′ form a vertex cover. In particular, no edge can be 
left uncovered by 𝑉′, since (because there are no carries) the corresponding 
column would be 0 in the sum of vertex values. Thus, no matter what slack 
values we add, the resulting digit position could not be equal to 2, and so this 
cannot be a solution to the subset sum problem.

10

Correctness



To control the precision of the approximation.

1. Specify a parameter ϵ > 0 as part of the input to the 
approximation algorithm

2. Require that the algorithm produce an answer that is 
within a relative error of ϵ of the optimal solution.

Note: It is understood that as ϵ tends to 0, the running time 
of the algorithm will increase. 

Such an algorithm is called a polynomial approximation scheme.
Ex: Running time = O(2(1/ϵ)n2)

A fully polynomial approximation scheme is one in which the 
running time is polynomial in both n and 1/ϵ. 

Ex. Running time = O((n/ϵ)2)

11

Polynomial Approximation Schemes


