
COMP 355
Advanced Algorithms

Subset Sum Approximation
Sections 6.4 & 8.8(KT)

Section 35.5(CLRS)

1

To the control the precision of the approximation.

1. Specify a parameter ϵ > 0 as part of the input to the
approximation algorithm

2. Require that the algorithm produce an answer that is
within a relative error of ϵ of the optimal solution.

Note: It is understood that as ϵ tends to 0, the running time
of the algorithm will increase.

Such an algorithm is called a polynomial approximation scheme.
Ex: Running time = O(2(1/ϵ)n2)

A fully polynomial approximation scheme is one in which the
running time is polynomial in both n and 1/ϵ.

Ex. Running time = O((n/ϵ)2)

2

Polynomial Approximation Schemes

Given a set S of positive integers {x1, x2, . . . , xn} and a target value
t, and we are asked whether there exists a subset S′ ⊆ S that sums
exactly to t.

The optimization problem is to determine the subset whose sum is
as large as possible but not larger than t.

Suppose we are given 0 < ϵ < 1. Let z* ≤ t denote the optimum
sum.

Approximation Problem: Return a value z ≤ t such that z ≥ z∗(1 − ϵ).

If we think of this as a knapsack problem, we want our knapsack to
be within a factor of (1 − ϵ) of being as full as possible. So, if ϵ = 0.1,
then the knapsack should be at least 90% as full as the best
possible.

3

Subset Sum

For example, if S = {1, 4, 6} and t = 8 then the successive lists would be

L0 = <0>

L1 = <0> ∪ <0 + 1> = <0, 1>

L2 = <0, 1> ∪ <0 + 4, 1 + 4> = <0, 1, 4, 5>

L3 = <0, 1, 4, 5> ∪ <0 + 6, 1 + 6, 4 + 6, 5 + 6> = <0, 1, 4, 5, 6, 7, 10, 11>

The last list would have the elements 10 and 11 removed, and the final
answer would be 7.

The algorithm runs in Ω(2n) time in the worst case, because this is the number
of sums that are generated if there are no duplicates, and no items are
removed.

4

Exponential Time Algorithm

To convert this into an approximation algorithm, we will:

• Introduce a way to “trim” the lists to decrease their sizes.
– The idea is that if the list L contains two numbers that are very close to

one another, e.g. 91,048 and 91,050, then we should not need to keep
both of these numbers in the list. One of them is good enough for
future approximations.

How much trimming can we allow and still keep our
approximation bound?

Furthermore, will we be able to reduce the list sizes from
exponential to polynomial?

5

Approximation Algorithm

• The trimming must also depend on ϵ. We select 𝛿 = 𝜖/𝑛.

• Note that 0 < δ < 1. Assume that the elements of L are sorted. We
walk through the list. Let z denote the last untrimmed element in L,
and let y ≥ z be the next element to be considered.

If
(𝑦−𝑧)

𝑦
≤ 𝛿, then we trim y from the list.

• Equivalently, this means that the final trimmed list cannot contain
two values y and z such that (1 − δ)y ≤ z ≤ y .

• We can think of z as representing y in the list.

Example:

Given δ = 0.1 and L = <10, 11, 12, 15, 20, 21, 22, 23, 24, 29>

trimmed list L′ = <10, 12, 15, 20, 23, 29>

6

Approximation Algorithm

7

Another way to visualize trimming

8

Proof

9

Approximate Subset Sum

The running time of the procedure is O(n|L|) which is O(n2 ln t/ϵ) by the earlier claim.

For example, consider the set S = {104, 102, 201, 101} and t = 308 and ϵ = 0.20.
We have δ = ϵ/4 = 0.05.

The final output is 302.

The optimum is 307 = 104 + 102 + 101.

Actual relative error in this case is
within 2%.

10

Approximate Subset Sum Example

