COMP 355
Advanced Algorithms

Recurrences & Master Theorem

Solving Recurrences

When analyzing algorithms, recall that we only
care about the asymptotic behavior.

Recursive algorithms are no different. Rather than
solve exactly the recurrence relation associated
with the cost of the algorithm, it is enough to give
an asymptotic characterization.

The main tool for doing this is the Master Theorem.

Master Theorem

Theorem 4.1 (CLRS)

Leta>1and b > 1 be constants, let f(n) be a function, and let

T (n) be defined on the nonnegative integers the recurrence:
n

T(n) =aT (b) + f(n)
Where we interpret n/b to mean either the floor (n/b) or
ceil(n/b). Then T (n)has the following asymptotic bounds:
1. Iff(n) = O(nlogb “‘E) for some constant € >0, then T(n) =
@(nlogb a).
2. Iff(n) = @(nlogb “), then T(n) = @(nlogb Y1g n)

3. If f(n) = Q(n!°8 ¢*€) for some constant € > 0 and if af (g)

< cf(n) for some constant c < 1 and all sufficiently large n,

then T(n) = 0(f(n)).

Simplified Master Theorem

Let T(n) be a monotonically increasing function

that satisfies
n

T(n) =aT (b) + f(n)
T(1) =c

Wherea>1,b>1,c>0.If f(n) = G)(nk) where k > 0, then
r@(nlogb a) ifa > b (case 1)
T(n) = { ©(n*logn) ifa= b* (case 2)
\G(nk) ifa < b (case 3)

Pitfalls of Master Theorem

You cannot use the Master Theorem if

@ ['(n) is not monotone, ex: 1'(n) =sinn
@ f(n)is not a polynomial, ex: T'(n) = 2T(5) + 2"

@ b cannot be expressed as a constant, ex: T'(n) =T'(\/n)

Note here, that the Master Theorem does not solve a
recurrence relation.

Does the base case remain a concern?

COMP 355: Advanced Algorithms 5

Master Theorem: Example 1

Let T(n) = T(n/2) + % n? + n. What are the parameters?
a=1
b =2
k=2
Therefore, which condition applies?
1 < 22, case 3 applies

e We conclude that

T(n) € O(n¥) = O (n2)

Master Theorem: Example 2

Let T(n)=2 T(n/4) + \n + 42. What are the parameters?
a=2
b=4
k=1/2
Therefore, which condition applies?

2 =412 case 2 applies
We conclude that

T(n) € ®©(n* logn) = ©(n logn)

Master Theorem: Example 3

Let T(n)=3 T(n/2) + 3/4n + 1. What are the parameters?
a=3
b=2
k=1

Therefore, which condition applies? 3 > 21!, case 1 applies

We conclude that 1'(n) € @(nlogba) — @(nIOgQ 3)
Note that log,3~1.584..., can we say that T(n) € ® (n1->%4)

No, because log,3~1.5849... and n1-584 ¢ @ (n!.5849)

‘Fourth Condition’

Recall that we cannot use the simplified Master
Theorem if f(n), the non-recursive cost, is not a
polynomial

There is a limited 4t condition of the Master
Theorem that allows us to consider poly-logarithmic
functions

Corollary: If f(n) € ©(n'°%*log" n) for some k>0 then
T(n) € O(n'°8 *loghT1 n)

This final condition is fairly limited and it is presented
merely for sake of completeness..

‘Fourth’ Condition: Example

e Say we have the following recurrence relation
T(n)=2T(n/2) + nlogn
* Clearly, a=2, b=2, but f(n) is not a polynomial.
However, we have f(n)e®(n logn), k=1

* Therefore by the 4" condition of the Master
Theorem we can say that

T(n) € ©(n'°%1og" 1 n) = ©(n'°82210g n) = O(nlog® n)

Other Ways To Solve Recurrences

The CLRS book refers to both the Substitution Method and
Recurrence Trees.

Substitution Method (in book)
1. Guess the form of the solution. (this can be difficult).

2. Use mathematical induction to find the constants and
show that the solution works.

In order to guess a solution, you may need to build a
recurrence tree first.

| present here a way to do backward substitution instead,
rather than start with a guess.

Backward Substitution: Example (1)

Example:
)

5, n=1

T(n—1)+2n, n> 1

 We begin by unfolding the recursion by a simple
substitution of the function values

 We observe that T(n-1) = T((n-1) -1) + 2(n-1) = T(n-2)
+ 2 (n-1)

T(n) =

e Substituting into the original equation
T(n)=T(n-2)+2(n-1)+2n

Backward Substitution: Example (2)

* If we continue to do that we get
T(n) = T(n-2) + 2(n-1) + 2n
T(n) = T(n-3) + 2(n-2) + 2(n-1) + 2n

T(n) = T(n-4) + 2(n-3) + 2(n-2) + 2(n-1) + 2n

T(n) = T(n-i) + ijoi'l 2(n -j) function’s value at the it iteration

e Solving the sum (use the summation rules on the ref. sheet)
we get:
T(n) = T(n-i) + 2ni — 2(i-1)(i-1+1)/2 + 2n
T(n) = T(n-i) + 2ni —i% +1i

Backward Substitution: Example (3)

 We want to get rid of the recursive term
T(n) = T(n-i) + 2ni - i%? + i

* To do that, we need to know at what iteration we reach our base case, i.e.
for what value of i can we use the initial condition T(1)=57?

* We get the base case when n-i=1 or i=n-1
e Substituting in the equation above we get

T(n) =5+ 2n(n-1) - (n-1)2 + (n-1)
T(n) = 5+2n%2-2n-(n?-2n+1)+(n-1) = n?+ n + 3

Recurrence Trees

A recursion tree models the costs (time) of a
recursive execution of an algorithm.

The recursion-tree method can be unreliable, just
like any method that uses ellipses (...).

The recursion-tree method promotes intuition,
however.

The recursion tree method is good for generating
guesses for the substitution method

Recurrence Trees (1)

When using recurrence trees, we graphically represent the
recursion

Each node in the tree is an instance of the function. As we
progress downward, the size of the input decreases

The contribution of each level to the function is equivalent to
the number of nodes at that level times the non-recursive
cost on the size of the input at that level

The tree ends at the depth at which we reach the base case
As an example, we consider a recursive function of the form
T(n) = aT(n/B) +f(n), T(d)=c

Recurrence Trees (2)

Iteration
0 T(n)
1 /
T(n/B) T(n/B)
/\
2 [1n/pd)] - o [Tn/p?)
i
logg n

Cost
f(n)

T(n/B) Otf(n/B)

T(n/B?)

o | T(n/B?) | a2f(n/B?)

o f(.n/ B

085 ™ . T(5)

Recurrence Trees (3)

e The total value of the function is the
summation over all levels of the tree

T(n) = S5 "ol f(n/))

loggn—1
T(n) =% "T(0) +) oﬂ'f(%
1=0

* Consider the following concrete example
T(n) = T(n/4) + T(n/2) + n?

)

Solve T(n) = T(n/4) + T(n/2) + n*:

T(77))
\ -
I(n/4) T(n/2) - T’
7N /N
I(m/16) T(n/8) T(n/8) T(n/4) %nz
/
O(1) Total =7 (1+ H(3) +(16)3+)

= O(n?) geomemc series

COMP 355: Advanced Algorithms 19

Practice

Use the Master Theorem to solve the following
recurrences, or if the Master Theorem cannot be
applied, say so.

a) T(n) =9T(n/3) + 1
b) T(n) =T(2n/3) + 1
c) T(n) =3T(n/4) +nlgn
d) T(n) =2T(n/4) +n

