
COMP 355
Advanced Algorithms

COMP 355: Advanced Algorithms 1

Recurrences & Master Theorem

COMP 355: Advanced Algorithms 2

When analyzing algorithms, recall that we only
care about the asymptotic behavior.

Recursive algorithms are no different. Rather than
solve exactly the recurrence relation associated
with the cost of the algorithm, it is enough to give
an asymptotic characterization.

The main tool for doing this is the Master Theorem.

Solving Recurrences

3

Theorem 4.1 (CLRS)

Let a ≥ 1 and b > 1 be constants, let 𝑓(𝑛) be a function, and let
𝑇 𝑛 be defined on the nonnegative integers the recurrence:

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

Where we interpret n/b to mean either the floor (n/b) or
ceil(n/b). Then 𝑇 𝑛 has the following asymptotic bounds:

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−∈ for some constant ∈ > 0, then 𝑇 𝑛 =

Θ 𝑛log𝑏 𝑎 .

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 lg 𝑛 .

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+∈ for some constant ∈ > 0 and if 𝑎𝑓
𝑛

𝑏

≤ 𝑐𝑓 𝑛 for some constant c < 1 and all sufficiently large 𝑛,
then 𝑇 𝑛 = Θ 𝑓(𝑛) .

Master Theorem

4

Simplified Master Theorem
Let 𝑇 𝑛 be a monotonically increasing function
that satisfies

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

𝑇 1 = c

Where a ≥ 1, b > 1, c > 0. If 𝑓 𝑛 = Θ 𝑛𝑘 where k ≥ 0, then

𝑇 𝑛 =

Θ 𝑛log𝑏 𝑎 if 𝑎 > 𝑏𝑘 𝑐𝑎𝑠𝑒 1

Θ 𝑛𝑘 log 𝑛 if 𝑎 = 𝑏𝑘 𝑐𝑎𝑠𝑒 2

Θ 𝑛𝑘 if 𝑎 < 𝑏𝑘 𝑐𝑎𝑠𝑒 3

COMP 355: Advanced Algorithms 5

Pitfalls of Master Theorem

Master Theorem: Example 1

Let T(n) = T(n/2) + ½ n2 + n. What are the parameters?

a =

b =

k =

Therefore, which condition applies?

1

2

2

1 < 22, case 3 applies

• We conclude that

T(n)  (nk) =  (n2)

COMP 355: Advanced Algorithms 6

Master Theorem: Example 2
Let T(n)= 2 T(n/4) + n + 42. What are the parameters?

a =

b =

k =

Therefore, which condition applies?

2

4

1/2

2 = 41/2, case 2 applies

We conclude that

COMP 355: Advanced Algorithms 7

𝑇 𝑛 ∈ (𝑛𝑘 log 𝑛) = (𝑛 log 𝑛)

Master Theorem: Example 3

Let T(n)= 3 T(n/2) + 3/4n + 1. What are the parameters?

a =

b =

k =

Therefore, which condition applies?

3

2

1

3 > 21, case 1 applies

We conclude that

Note that log231.584…, can we say that T(n)   (n1.584)

No, because log231.5849… and n1.584   (n1.5849)

COMP 355: Advanced Algorithms 8

COMP 355: Advanced Algorithms 9

• Recall that we cannot use the simplified Master
Theorem if f(n), the non-recursive cost, is not a
polynomial

• There is a limited 4th condition of the Master
Theorem that allows us to consider poly-logarithmic
functions

• Corollary: If for some k0 then

• This final condition is fairly limited and it is presented
merely for sake of completeness..

‘Fourth Condition’

COMP 355: Advanced Algorithms 10

‘Fourth’ Condition: Example

• Say we have the following recurrence relation

T(n)= 2 T(n/2) + n log n

• Clearly, a=2, b=2, but f(n) is not a polynomial.
However, we have f(n)(n log n), k=1

• Therefore by the 4th condition of the Master
Theorem we can say that

COMP 355: Advanced Algorithms 11

Other Ways To Solve Recurrences

The CLRS book refers to both the Substitution Method and
Recurrence Trees.

Substitution Method (in book)

1. Guess the form of the solution. (this can be difficult).

2. Use mathematical induction to find the constants and
show that the solution works.

In order to guess a solution, you may need to build a
recurrence tree first.

I present here a way to do backward substitution instead,
rather than start with a guess.

COMP 355: Advanced Algorithms 12

Example:

𝑇 𝑛 = ቊ
5, 𝑛 = 1

𝑇 𝑛 − 1 + 2𝑛, 𝑛 > 1

Backward Substitution: Example (1)

• We begin by unfolding the recursion by a simple
substitution of the function values

• We observe that T(n-1) = T((n-1) -1) + 2(n-1) = T(n-2)
+ 2 (n-1)

• Substituting into the original equation
T(n)=T(n-2)+2(n-1)+2n

COMP 355: Advanced Algorithms 13

• If we continue to do that we get

T(n) = T(n-2) + 2(n-1) + 2n

T(n) = T(n-3) + 2(n-2) + 2(n-1) + 2n

T(n) = T(n-4) + 2(n-3) + 2(n-2) + 2(n-1) + 2n

…..

T(n) = T(n-i) + j=0
i-1 2(n - j) function’s value at the ith iteration

• Solving the sum (use the summation rules on the ref. sheet)
we get:

T(n) = T(n-i) + 2ni – 2(i-1)(i-1+1)/2 + 2n

T(n) = T(n-i) + 2ni – i2 + i

Backward Substitution: Example (2)

COMP 355: Advanced Algorithms 14

• We want to get rid of the recursive term

T(n) = T(n-i) + 2ni – i2 + i
• To do that, we need to know at what iteration we reach our base case, i.e.

for what value of i can we use the initial condition T(1)=5?

• We get the base case when n-i=1 or i=n-1

• Substituting in the equation above we get

T(n) = 5 + 2n(n-1) – (n-1)2 + (n-1)

Backward Substitution: Example (3)

T(n) = 5+2n2-2n–(n2-2n+1)+(n-1) = n2 + n + 3

Recurrence Trees

COMP 355: Advanced Algorithms 15

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable, just
like any method that uses ellipses (…).

• The recursion-tree method promotes intuition,
however.

• The recursion tree method is good for generating
guesses for the substitution method

Recurrence Trees (1)

• When using recurrence trees, we graphically represent the
recursion

• Each node in the tree is an instance of the function. As we
progress downward, the size of the input decreases

• The contribution of each level to the function is equivalent to
the number of nodes at that level times the non-recursive
cost on the size of the input at that level

• The tree ends at the depth at which we reach the base case

• As an example, we consider a recursive function of the form

T(n) = T(n/) + f(n), T() = c

COMP 355: Advanced Algorithms 16

Recurrence Trees (2)
Iteration

0

1

2

.

.

i

.

.

log n

TT(n)

T(n/) T(n/) T(n/)  

T(n/2) T(n/2)   T(n/2) T(n/2)  

Cost

f(n)

f(n/)

2f(n/2)

.

.

i f(n/i)

.

.

COMP 355: Advanced Algorithms 17

Recurrence Trees (3)

• The total value of the function is the
summation over all levels of the tree

• Consider the following concrete example

T(n) = T(n/4) + T(n/2) + n2

COMP 355: Advanced Algorithms 18

Recurrence Tree: Example (2)

COMP 355: Advanced Algorithms 19

COMP 355: Advanced Algorithms 20

Use the Master Theorem to solve the following
recurrences, or if the Master Theorem cannot be
applied, say so.

a) T(n) = 9T(n/3) + 1

b) T(n) = T(2n/3) + 1

c) T(n) = 3T(n/4) + n lg n

d) T(n) = 2T(n/4) + n

Practice

