
COMP 355
Advanced Algorithms

Sorting and Selection Review

Sorting
Given n elements, rearrange in ascending order.

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank results.

Problems become easier once sorted.
Find the median.
Find the closest pair.
Binary search in a database.
Identify statistical outliers.
Find duplicates in a mailing list.

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of particles.
Book recommendations on
Amazon.
Load balancing on a parallel
computer.
. . .

Sorting Algorithms

Usually divided into two classes,

• internal sorting algorithms, (assume that data
is stored in an array in main memory

• external sorting algorithm (assume that data
is stored on disk or some other device that is
best accessed sequentially.

We will only consider internal sorting.

Two Important Properties

• In-place: The algorithm uses no additional array
storage, and hence (other than perhaps the system’s
recursion stack) it is possible to sort very large lists
without the need to allocate additional working
storage.

• Stable: A sorting algorithm is stable if two elements
that are equal remain in the same relative position
after sorting is completed. This is of interest, since in
some sorting applications you sort first on one key and
then on another. It is nice to know that two items that
are equal on the second key, remain sorted on the first
key.

MergeSort
Classic divide-and-conquer algorithm

– Recursively sort each half.

– Divide array into two halves.

– Merge two halves to make sorted whole.

• Advantage: stable

• Disadvantage: not in-place.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T
merge

sort

divide

O(n)

2T(n/2)

O(1)

Selection

• Related to sorting

• Given an array A of n numbers (not sorted) and an
integer k, where 1 ≤ k ≤ n, return the kth smallest
value of A.

• Easy algorithm:
– Sort the array (Θ (n log n))

– Return kth element

• Harder algorithm
– O(n)

– Variant of QuickSort

Lower Bounds for Comparison-Based
Sorting

• O(n log n) sorting algorithms have been the fastest
algorithms for many years.

• Can we sort faster?

• Theorem: Any comparison-based sorting algorithm
has worst-case running time Ω(n log n).

Linear-Time Sorting

• The Ω(n log n) lower bound implies that if we
hope to sort numbers faster than in O(n log n)
time, we cannot do it by making comparisons
alone.

• Counting Sort: assumes each integer in range
from 1 to k.

• Radix Sort: only practical for very small ranges of
integers.

• BucketSort: works for floating-point numbers,
but should only be used if numbers are roughly
uniformly distributed over some range.

Counting Sort

Example

A = array you need to sort
B = empty array of size n
n = len(A)
k = max value in A

Radix Sort

RADIX_SORT(A, d):

for i = 1 to d:

use stable sort to sort array A on digit i

