
COMP 355
Advanced Algorithms

1

Finish Linear Time Sorting
Greedy Algorithms for Scheduling

2

Linear-Time Sorting

• The Ω(n log n) lower bound implies that if we
hope to sort numbers faster than in O(n log n)
time, we cannot do it by making comparisons
alone.

• Counting Sort: assumes each integer in range
from 1 to k.

• Radix Sort: only practical for very small ranges of
integers.

• BucketSort: works for floating-point numbers,
but should only be used if numbers are roughly
uniformly distributed over some range.

BucketSort

BUCKET_SORT(A):
n = A.length
let B[0…n-1] be a new array
for i = 0 to n -1:

make B[i] an empty list
for i = 0 to n:

insert A[i] into list 𝐵[𝑛𝐴 𝑖]
for i = 0 to n -1:

sort list B[i] with insertion sort
concatenate lists B[0], B[1],…, B[n-1] in order

Summary

5

Questions

• Why is the worst-case running time of bucket sort
O(n2) ? What simple change to the algorithm
preserves its linear time average run-time and
makes its worst-case running time O(n log n)?

• Given the data set A = {6, 0, 2, 0, 1, 3, 4, 6, 1, 3,
2}, which sorting algorithm would you use?

• Show how to sort n integers in the range 0 to n3-1
in Θ(n) time.

6

Greedy Algorithms

• Def: Algorithms that make locally optimal choices
using a metric with the hope of finding a globally
optimal solution.

• Example: Making change with US coins.

• Optimization Problem: Given an input, compute
a solution, subject to various constraints, that
either minimizes cost or maximizes profit.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest
value that does not take us past the amount to be paid.

Sort coins denominations by value: c1 < c2 < … < cn.

S  

while (x  0) {

let k be largest integer such that ck  x

if (k = 0)

return "no solution found"

x  x - ck
S  S  {k}

}

return S

coins selected

7

Interval Scheduling
Interval scheduling.

• Job j starts at sj and finishes at fj.

• Two jobs compatible if they don't overlap.

• Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

Greedy algorithm. Consider jobs in increasing order of finish
time. Take each job provided it's compatible with the ones
already taken.

Implementation. O(n log n).

• Remember job j* that was added last to A.

• Job j is compatible with A if sj  fj*.

Sort jobs by finish times so that f1  f2  ...  fn.

A  

for j = 1 to n {

if (job j compatible with A)

A  A  {j}

}

return A

jobs selected

Interval Scheduling: Algorithm

9

10

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

0 1 2 3 4 5 6 7 8 9 10 11

11
0 1 2 3 4 5 6 7 8 9 10 11

B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

12

0 1 2 3 4 5 6 7 8 9 10 11

BA

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

13

0 1 2 3 4 5 6 7 8 9 10 11

B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

14

0 1 2 3 4 5 6 7 8 9 10 11

B ED

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

15

0 1 2 3 4 5 6 7 8 9 10 11

B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

16

0 1 2 3 4 5 6 7 8 9 10 11

B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

17

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

18

