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Finish Linear Time Sorting
Greedy Algorithms for Scheduling
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Linear-Time Sorting

• The Ω(n log n) lower bound implies that if we 
hope to sort numbers faster than in O(n log n) 
time, we cannot do it by making comparisons 
alone.

• Counting Sort: assumes each integer in range 
from 1 to k. 

• Radix Sort: only practical for very small ranges of 
integers.

• BucketSort: works for floating-point numbers, 
but should only be used if numbers are roughly 
uniformly distributed over some range.



BucketSort

BUCKET_SORT(A):
n = A.length
let B[0…n-1] be a new array
for i = 0 to n -1:

make B[i] an empty list
for i = 0 to n:

insert A[i] into list 𝐵[ 𝑛𝐴 𝑖 ]
for i = 0 to n -1:

sort list B[i] with insertion sort
concatenate lists B[0], B[1],…, B[n-1] in order



Summary
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Questions

• Why is the worst-case running time of bucket sort 
O(n2) ? What simple change to the algorithm 
preserves its linear time average run-time and 
makes its worst-case running time O(n log n)?

• Given the data set A = {6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 
2}, which sorting algorithm would you use? 

• Show how to sort n integers in the range 0 to n3-1 
in Θ(n) time. 
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Greedy Algorithms

• Def: Algorithms that make locally optimal choices 
using a metric with the hope of finding a globally 
optimal solution.

• Example: Making change with US coins.

• Optimization Problem: Given an input, compute 
a solution, subject to various constraints, that 
either minimizes cost or maximizes profit.



Coin-Changing:  Greedy Algorithm

Cashier's algorithm.  At each iteration, add coin of the largest 
value that does not take us past the amount to be paid.

Sort coins denominations by value: c1 < c2 < … < cn.

S  

while (x  0) {

let k be largest integer such that ck  x

if (k = 0)

return "no solution found"

x  x - ck
S  S  {k}

}

return S

coins selected 
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Interval Scheduling
Interval scheduling.

• Job j starts at sj and finishes at fj.

• Two jobs compatible if they don't overlap.

• Goal: find maximum subset of mutually compatible jobs.
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Greedy algorithm.  Consider jobs in increasing order of finish 
time. Take each job provided it's compatible with the ones 
already taken.

Implementation.  O(n log n).

• Remember job j* that was added last to A.

• Job j is compatible with A if sj  fj*.

Sort jobs by finish times so that f1  f2  ...  fn.

A  

for j = 1 to n {

if (job j compatible with A)

A  A  {j}

}

return A  

jobs selected 

Interval Scheduling:  Algorithm
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Interval Scheduling
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