COMP 355
Advanced Algorithms

Finish Linear Time Sorting
Greedy Algorithms for Scheduling

1Gid

Rhodes College

1848 —

Linear-Time Sorting

The Q(n log n) lower bound implies that if we
hope to sort numbers faster than in O(n log n)
time, we cannot do it by making comparisons
alone.

Counting Sort: assumes each integer in range
from 1 to k.

Radix Sort: only practical for very small ranges of
Integers.

BucketSort: works for floating-point numbers,
but should only be used if numbers are roughly
uniformly distributed over some range.

BucketSort

BUCKET_SORT(A):
n = A.length
let B[0...n-1] be a new array
fori=0ton-1:
make B[i] an empty list
fori =0 to n:
insert A[i] into list B[|nA[i]]]
fori=0ton-1:
sort list B[i] with insertion sort
concatenate lists B[0], B[1],..., B[n-1] in order

Summary

Comparison-Based Sorting Algorithms: A stable sorting algorithm preserves the relative order of equal
elements. An in-place sorting algorithm uses no additional array storage (although O(logn) additional
space is allowed for the recursion stack).

Algorithm Time Stable | In-place
BubbleSort | O(n?) Yes Yes
InsertionSort | ©(n?) Yes Yes
MergeSort O(nlogn) | Yes No
HeapSort O(nlogn) | No Yes
QuickSort* O(nlogn) | Yes/No | No/Yes

*There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place
but not stable.

Non-Comparison-Based Sorting Algorithms: All of these algorithms are stable, but not in-place.

Algorithm Assumptions Time Space
CountingSort | Integers over [0..k] O(n + k) O(n + k)
RadixSort Integers over [0..n9] O(d(n + k)) O(n+ k)
BucketSort Integers uniformly distributed | ©(n) (Expected) | ©(n)

Questions

* Why is the worst-case running time of bucket sort
O(n?%) ? What simple change to the algorithm
preserves its linear time average run-time and
makes its worst-case running time O(n log n)?

e GiventhedatasetA={6,0,2,0,1,3,4,6,1, 3,
2}, which sorting algorithm would you use?

* Show how to sort n integers in the range 0 to n3-1
in ©(n) time.

Greedy Algorithms

e Def: Algorithms that make locally optimal choices
using a metric with the hope of finding a globally
optimal solution.

* Example: Making change with US coins.

* Optimization Problem: Given an input, compute
a solution, subject to various constraints, that
either minimizes cost or maximizes profit.

Coin-Changing: Greedy Algorithm

At each iteration, add coin of the largest
value that does not take us past the amount to be paid.

Sort coins denominations by value: c; < ¢, < .. < ¢c,.

coins selected

S « ¢
while (x # 0) {
let k be largest integer such that ¢, < x
if (k = 0)
return "no solution found"
X ¢« X - ¢
S <« S U {k}
}

return S

Interval Scheduling

Interval scheduling.

* Jobjstarts at s; and finishes at f..

* Two jobs compatible if they don't overlap.

* Goal: find maximum subset of mutually compatible jobs.

e
8 9 10 11

0 1 2 3 4 5 6 7

Greedy algorithm. Consider jobs in increasing order of finish
time. Take each job provided it's compatible with the ones
already taken.

Implementation. O(n log n).
 Remember job j* that was added last to A.
* Jobjis compatible with A'if s; > f.. 5

Interval Scheduling

B

A
G

E

H

2 3 4 5 6 7 8

9

10

11

10

11

» lime

10

Interval Scheduling

B

A
G

E

H

» lime

2 3 4 5 6 7 8

9

10

11

10

11

11

Interval Scheduling

B

E

A
G

» lime

H
0 1 2 3 4 5 8 9 10 11
:
0 1 2 3 4 5 8 9 10 11

12

Interval Scheduling

B

A
G

E

H

» lime

2 3 4 5 6 7 8

9

10

11

10

11

13

Interval Scheduling

B

A
G

E

H

» lime

2 3 4 5 6 7 8

9

10

11

10

11

14

Interval Scheduling

B

A
G

E

» lime

H
0 1 2 3 4 5 6 7 8 9 10 11
: | e
0 1 2 3 4 5 6 7 8 9 10 11

15

Interval Scheduling

B

E

A

G

H
0 1 2 3 4 5 6 7 8 9 10 11
: :
0 1 2 3 4 5 6 7 8 9 10 11

» lime

16

Interval Scheduling

B

A
G

E

H

2 3 4 5 6 7 8

9

10

11

10

11

» lime

17

Interval Scheduling

B

E

G

H

2 3 4 5 6 7 8 9 10

11

11

» lime

18

