
CS355: Advanced Algorithms Fall 2019

Problem Set 5: Graph Algorithms

Handed out Friday, September 27. Due at the start of class Friday, October 4.

Problem 1. (15 points) You are working for a delivery company where you must drive trucks
from a central dispatch center to various locations. The road network is modeled by a weighted
digraph G = (V,E), where the weight of each edge (u, v) is the distance from location u to
location v in miles. Recently, the department of transportation erected toll booths in various
locations. This is modeled by associating a non-negative toll value t(u) with each vertex u of
the digraph. Based on your level of gas consumption, you determine that you are willing to
pay $X dollars in tolls in order to save 20 ·X miles. For example, if you have three possible
paths, of lengths 100, 150, and 200 miles, involving $10, $5, and $3 in tolls, respectively, you
would prefer the second option (150 miles and $5 in tolls).

Devise an efficient algorithm that computes the minimum cost path from the dispatch center
s to every node of the digraph. As always, justify your algorithm’s correctness and derive its
running time. (Hint: This can be solved as fast as Dijkstra’s algorithm.)

Problem 2.(15 points) You are given an undirected graph G = (V,E) in which the edge weights
are highly restricted. In particular, each edge has a positive integer weight of either 1, 2, ...,W ,
where W is a constant (independent of the number of edges or vertices). Show that it is
possible to compute the single-source shortest paths in such a graph in O(n+m) time, where
n = |V | and m = |E|.
Hint: Because W is a constant, a running time of O(W (n + m)) is as good as O(n + m).

Problem 3. (15 points) Programming - Identifying DAGs (Upload code to Moodle)

Write a Python program that reads in an adjacency matrix representing a graph, either
from the command line or as input, and determines if that graph is a DAG (directed acyclic
graph) or not. The output for your program should be Yes, it’s a DAG, or No, it’s not a DAG.

Examples:
G1 = [[0,1,1,0,1], [0,0,0,0,1], [0,1,0,1,0], [0,1,0,0,1], [0,0,0,0,0]] returns “Yes, it’s a DAG.”
G2 = [[0,1,0,1,0], [1,0,1,0,1], [0,1,0,1,1], [1,0,1,0,1], [0,1,1,1,0]] returns “No, it’s not a DAG.”

Hint: PythonReviewGraphs.py on Moodle has code to help take in a string representation
of a graph like above and make it into a 2-d list

Extra Credit: If the Graph is a DAG, output a valid topological ordering of the nodes.

1


