
CS355: Advanced Algorithms Fall 2019

Problem Set 6: Divide-and-Conquer Algorithms

Handed out Friday, October 4. Due at the start of class Friday, October 11.

Problem 1. (15 points) Given a list A =< a1, ..., an > of integers, an off-parity inversion is a
pair ai and aj such that i < j, ai > aj , and ai and aj are of different parities. (In other
words, it is an inversion in which one number is even and the other is odd.) See the example
below in Figure 1.
Design an O(n log n) algorithm that counts the number of off-parity inversions in a list A
containing n elements. Justify your algorithm’s correctness and derive its running time.

Figure 1: Problem 1.

Problem 2.(15 points) You are given a set of n lines in the plane. Each line is given by a pair
of numbers (ai, bi), which represents the line y = aix + bi. That is, ai gives the slope of the
line and bi gives its y-intercept. You are told that ai < 0 (all slopes are negative) and bi > 0
(all intercepts are positive). You are asked to count the number of intersections that occur
in the positive (x, y)-quadrant. (For example, in Figure 2 below, there are six intersections
in the first quadrant, shown as black dots.)

Of course, this would be easy to do in O(n2) time, but I want you to develop an answer
for this problem that runs in O(n log n) time.

For simplicity, you may assume that the ai values are all distinct and the bi values are
also all distinct. You may also assume that no two lines intersect exactly on the x-axis or the
y-axis.

Figure 2: Problem 2.

1



CS355: Advanced Algorithms Fall 2019

Problem 3. (15 points) In computer graphics it is often desirable to compute the silhouette of
a collection of objects. In this problem, we’ll consider a simple example involving rectangles.

You are given a collection of (possibly overlapping) rectangles that extend upwards from
the x-axis. Each rectangle is defined by a triple (ai, bi, hi) where ai and bi denote the rect-
angles left and right x-coordinates and hi denotes the height of the rectangle. The union of
these rectangles defines an upper envelope, which consists of a sequence of non-overlapping
intervals from left to right along the x-axis. Each interval is associated with a height value
of the tallest rectangle that spans this interval.

For example, the input for the rectangles shown in Figure 3 might be as follows. (Note that
the rectangles are not given in any particular order.)

Figure 3: Problem 3.

The output consists of seven intervals (including one interval of height 0). Suppose that
the output consists of m intervals. We represent this as an array x[1..m + 1] such that the
ith interval spans x[i] to x[i + 1], and an array t[1..m] where t[i] is the height of the tallest
rectangle spanning the ith interval. The output for the above input would be:

x = 〈1, 2, 6, 7, 8, 10, 13, 15〉 and t = 〈2, 4, 0, 5, 7, 5, 3〉

Design an O(n log n) algorithm which, given a sequence of n such triples, computes the upper
envelope of these union of the rectangles. Derive the running time of your algorithm. You
may assume that the values ai, bi, and hi are all distinct.

2


