
CS355: Advanced Algorithms Fall 2019

Problem Set 7: Dynamic Programming

Handed out Friday, October 11. Due at the start of class Monday, October 21.

Problem 1. (10 points) Show the results of the DP algorithm for computing the longest common
subsequence (LCS) as presented in class on the following input:

X = 〈ABCACB〉 Y = 〈BACAB〉

(a) Show the contents of the lcs table (see Lecture 17). Also, show the matrix of helper
values to obtain the solution. I would suggest representing them as arrows (see, Slide 8
from Lecture 17), but you may represent them as you like, as long as you explain your
convention.

(b) Which sequence do you get if you apply the function get-lcs-sequence as given in class.

(Warning: There are multiple LCS’s of the same length, and the function given in class
returns one of these. I will give 50% credit for any LCS, and full credit for the same one
generated by the algorithm given in class. See the Extra-Credit Problem for more.)

Problem 2. (20 points) In this problem we consider some variations of the longest common
subsequence (LCS) problem. In all instances the input consists of two sequences, X =
〈x1, . . . , xm〉 and Y = 〈y1, . . . , yn〉 and the output involves the length or weight of a common
subsequence (or a variant thereof).

In each of the following instances, present a recursive DP formulation. (You do not need to
give pseudocode, just the recursive rule.) Justify the correctness of your solution.

Hint: For all DP formulations, don’t forget to include (1) the basis case(s), and (2) how to
obtain the final answer given your formulation.

(a) Weighted CS: The letters are drawn from an alphabet Σ. For each symbol z ∈ Σ, let
w(z) denote the weight of this symbol. The weighted common subsequence (WCS) is
the common subsequence Z = 〈z1, . . . , zk〉 that maximizes the total weight

∑k
j=1w(zj).

(For example, in Fig. 1(a), the standard LCS is 〈ACCBA〉, which has a weight of 22 but
the WCS is 〈BBA〉, which has a weight of 25.)

Figure 1: Problem 2.

1



CS355: Advanced Algorithms Fall 2019

(b) LCS with One-Sided Repeats: Given X and Y , we define a common subsequence
with repeats to be a sequence Z = 〈z1, . . . , zk〉 that is a subsequence of Y , and if some
repeated contiguous symbols of Z are collapsed to a single symbol (e.g., “CCCC” →
“C”), the result is a subsequence of X. The objective is to maximize the sum of the
number of symbols of X that are matched in the LCS and the number of symbols of Y
that are matched in the LCS. (For example, in Fig. 1 we show a possible input-output
combination. Six symbols of X are matched and ten symbols of Y are matched, for a
total of 16.)

While you do not have to implement your algorithm, for full credit it should be clear that
your solution can be implemented in O(mn) time.

Problem 3.(15 points) Let’s return to the typesetting problem from Homework 4. Recall that
we are given a line of length L and a paragraph consisting of a sequence of words whose
lengths are W = 〈w1, ..., wn〉. (We assume that wi < L for all i.) We are to place words in
order along each line subject to the condition that the sum of word lengths on any line does
not exceed L. The penalty for each line is defined to be the difference between the sum of
word lengths on this line and L. The objective is to place the words to minimize the maximum
penalty over all the lines (see Fig. 2(a)). In Homework 4 we showed that a greedy strategy

Figure 2: Problem 3.

is not optimal. In this problem we will show that this problem can be solved optimally by
dynamic programming.

(a) Derive a (recursive) dynamic programming rule, which given L and the word sequence
W , determines the layout that minimizes the maximum penalty (see Fig. 2(a)). Actually,
I don’t care about the layout, just the final value of the maximum penalty, and I don’t
need a full algorithm, just the recursive DP formulation.
Briefly justify the correctness of your algorithm and derive its running time (if it were
implemented). It may help to imagine that you have access to a function W (i, j) that
returns the sum of word lengths from wi up to wj (assuming that 1 ≤ i ≤ j ≤ n) that
runs in constant time.

(b) In practice, when laying out a paragraph we do not care whether the last line is “ragged”.
Modify your solution from part (a) to compute the layout that minimizes the maximum
layout excluding the last line. (For example, by this metric the layout shown in Fig.
2(b) has a lower cost than the layout from Fig. 2(a).)
As in part (a), briefly justify the correctness of your algorithm and derive its running
time.

2



CS355: Advanced Algorithms Fall 2019

Problem 4. (10 points) Programming (upload code to Moodle)

Consider the shortest common supersequence (SCS) problem. The input to the SCS problem
is two strings A = 〈A1...Am〉 and B = 〈B1...Bn〉, and the output is the length of the shortest
string that contains both A and B as subsequences.

Example: A = 〈ABCBABA〉, B = 〈BCAABAB〉, then the SCS = 〈ABCAABABA〉,
so the len(SCS) = 9.

Given that the recurrence relationship is as follows, implement a dynamic programming al-
gorithm to solve the SCS problem. Let SCS(i, j) be the length of the shortest common
supersequence of A[1..i] and B[1..j]. Your algorithm must run in O(mn) time for full credit.
Your program should prompt the user to enter two strings and output the length of the
shortest common supersequence, not the actual SCS.

SCS(i, j) = min



j if i = 0

i if j = 0

SCS(i− 1, j − 1) + 1 i, j > 0 and xi = yj

SCS(i, j − 1) + 1 i, j > 0 and xi 6= yj

SCS(i− 1, j) + 1 i, j > 0 and xi 6= yj

Extra Credit: Add backtracking hints to your code and use them to output the SCS as well
as the length of the SCS.

Challenge Problem. (Extra Credit) Returning to Problem 1, observe that in this example
there are many LCS’s of equal length, such as 〈BCAB〉,〈ACAB〉, and 〈BACB〉. How would
you modify the LCS algorithm (both filling out the LCS table (lcs[i, j]) and the helper table
(h[i, j]) so that it would be possible to obtain all the LCS strings?

How would you modify the algorithms to output the number of distinct LCS sequences?

3


