
CS355: Advanced Algorithms Fall 2019

Problem Set 8: Network Flows

Handed out Monday, October 21. Due at the start of class Monday, October 28.

Note: When asked to present an “efficient algorithm,” it suffices to provide a reduction to network
flow. (Unless the problem asks specifically for this information, you do not need to explain which
network-flow algorithm will be used to solve the problem.)

Problem 1. (20 points) In this step, we will trace the partial execution of the Ford-Fulkerson
algorithm on a sample network.

(a) Consider the s-t network G shown in Fig. 1(a), and consider the initial flow f in Fig. 1(b).
Show the residual network Gf for this flow.

(a) Initial network G (b): Initial flow f

s

a

d

c

4

7 4

b t35

6
2 5

3 4

3 s

a

d

c

4/4

2/7 4/4

b t3/35/5

4/6
0/2 0/5

2/3 0/4

3/3

Figure 1: Problem 1: Ford-Fulkerson.

(b) Find any s-t path in Gf . How much flow can you push along this path? Show the
updated flow (in the same manner as Fig. 1(b)).

(c) Show the residual network that results for your flow from (b).

(d) Is this the final maximum flow in this network? (If not, keep running Ford-Fulkerson
until you get the maximum flow, and show the final flow.) What is the value of the
maximum flow?

(e) Show the residual network for your maximum flow from (d). (If the flow from (c) was
already maximum, then state this.)

(f) Show the cut that results by partitioning the network into two subsets of vertices, the
vertices X that are reachable from s and the remaining vertices Y = V \X. What is the
capacity of this cut? (It should match your flow value, if you did everything correctly.)

Problem 2. (10 points) An edge of a flow network is called critical if decreasing the capacity
of this edge results in a decrease in the maximum flow value. Present an efficient algorithm
that, given an s-t network G finds any critical edge in a network (assuming one exists).

1



CS355: Advanced Algorithms Fall 2019

Problem 3.(15 points) The computer science department at a major university has a tutoring
program. There are m tutors, {t1, . . . , tm} and n students who have requested the tutoring
service {s1, . . . , sn}. Each tutor ti has a set Ti of topics that he/she/they knows, and each
student sj has a set of topics Sj that he/she/they wants help with. We say that tutor ti is
suitable to work with student sj if Sj ⊆ Ti. (That is, the tutor ti knows all the topics of
interest to student sj .) Finally, each tutor ti has a range [ai, bi], indicating that this tutor
would like to work with at least ai students and at most bi students.

Given a list of students, a list of tutors, the ranges [ai, bi] for the tutors, and a list of suitable
tutors for each student, present an efficient algorithm that determines whether it is possible
to generate a pairing of tutors to students such that:

• Each student is paired with exactly one tutor.

• Each tutor ti is paired with at least ai and at most bi students.

• Each student is paired only with a suitable tutor.

2


