Problem Set 8: Network Flows

Handed out Monday, October 21. Due at the start of class Monday, October 28.

Note: When asked to present an "efficient algorithm," it suffices to provide a reduction to network flow. (Unless the problem asks specifically for this information, you do not need to explain which network-flow algorithm will be used to solve the problem.)

- **Problem 1. (20 points)** In this step, we will trace the partial execution of the Ford-Fulkerson algorithm on a sample network.
 - (a) Consider the *s*-*t* network G shown in Fig. 1(a), and consider the initial flow f in Fig. 1(b). Show the residual network G_f for this flow.

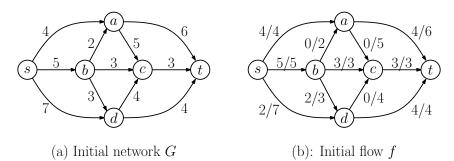


Figure 1: Problem 1: Ford-Fulkerson.

- (b) Find any *s*-*t* path in G_f . How much flow can you push along this path? Show the updated flow (in the same manner as Fig. 1(b)).
- (c) Show the residual network that results for your flow from (b).
- (d) Is this the final maximum flow in this network? (If not, keep running Ford-Fulkerson until you get the maximum flow, and show the final flow.) What is the value of the maximum flow?
- (e) Show the residual network for your maximum flow from (d). (If the flow from (c) was already maximum, then state this.)
- (f) Show the cut that results by partitioning the network into two subsets of vertices, the vertices X that are reachable from s and the remaining vertices $Y = V \setminus X$. What is the capacity of this cut? (It should match your flow value, if you did everything correctly.)
- **Problem 2.** (10 points) An edge of a flow network is called *critical* if decreasing the capacity of this edge results in a decrease in the maximum flow value. Present an efficient algorithm that, given an s-t network G finds any critical edge in a network (assuming one exists).

Problem 3.(15 points) The computer science department at a major university has a tutoring program. There are m tutors, $\{t_1, \ldots, t_m\}$ and n students who have requested the tutoring service $\{s_1, \ldots, s_n\}$. Each tutor t_i has a set T_i of topics that he/she/they knows, and each student s_j has a set of topics S_j that he/she/they wants help with. We say that tutor t_i is suitable to work with student s_j if $S_j \subseteq T_i$. (That is, the tutor t_i knows all the topics of interest to student s_j .) Finally, each tutor t_i has a range $[a_i, b_i]$, indicating that this tutor would like to work with at least a_i students and at most b_i students.

Given a list of students, a list of tutors, the ranges $[a_i, b_i]$ for the tutors, and a list of suitable tutors for each student, present an efficient algorithm that determines whether it is possible to generate a pairing of tutors to students such that:

- Each student is paired with *exactly* one tutor.
- Each tutor t_i is paired with at least a_i and at most b_i students.
- Each student is paired only with a *suitable* tutor.