Adversarial Search

* Problem: minimax takes too long.

e Solution: improve algorithm to ignore parts of
the tree that will definitely not be used
(assuming both players play optimally).

MAX

MIN

12

MAX

MIN

* |dea: for each node, keep track of the range of
possible values that minimax could produce

for that node.

* |f we ever find ourselves at a node that we
know will never be selected during (optimal)
game play, we can "prune" it (end the
recursion on this part of the tree).

e Enhanced version of minimax is called
minimax with alpha-beta pruning.

Alpha-beta pruning

 Each node in the game tree needs two extra
variables, called alpha and beta.

* Alpha and beta are inherited from parent nodes.

— alpha = highest-value choice we’ve found so far (best
move for MAX)

— beta = lowest-value choice we’ve found so far (best
choice for MIN)

* If at a MAX node, we see a child node that has a
value >= than beta, short-circuit.

* If at a MIN node, we see a child node that has a
value <= than alpha, short-circuit.

Alpha-beta pruning

* Recall that minimax is a variant of depth-first
search. During the algorithm, we will only
consider nodes along the path from the root
node to the current node.

At each node in the search, we will maintain
two variables:

— alpha (a) = highest numeric value we’ve found so
far on this path (best move for MAX)

— beta (B) = lowest numeric value we’ve found so far
on this path (best choice for MIN)

Alpha-beta pruning

* Alpha and beta are inherited from parent
nodes as we recursively descend the tree.

e If at a MAX node, we see a child node that has
a value >= than beta, short-circuit.

e If at a MIN node, we see a child node that has
a value <= than alpha, short-circuit.

function ALPHA-BETA-SEARCH(state) returns an action
v +— MAX-VALUE(state, —00, +00)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, o, () returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V+— —00
for each a in ACTIONS(state) do
v +— MAX(v, MIN-VALUE(RESULT(s,a), c, (3))
if v > [then return v
a+— MAX(a, v)
return v

function MIN-VALUE(state, o, [3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
vV +— +00
for each a in ACTIONS(state) do
v «— MIN(v, MAX-VALUE(RESULT(s,a) ,a, 3))
if v < « then return v
3 +— MIN(3, v)

return v

* The results of alpha-beta depend on the order

in which moves are considered among the
children of a node.

* |f possible, consider better moves first!

Real-world use of alpha-beta

* (Regular) minimax is normally run as a
preprocessing step to find the optimal move

from every possible situation.
* Minimax with alpha-beta can be run as a

preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

* Save states somewhere so if we re-encounter
them, we don't have to recalculate everything.

Real-world use of alpha-beta

* States get repeated in the game tree because
of transpositions.

* When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).

— Called a transposition table.

Real-world use of alpha-beta

* |n the real-world, alpha-beta does not "pre-
generate" the game tree.

— The whole point of alpha-beta is to not have to
generate all the nodes.

* The DFS part of minimax/alpha-beta is what
generates the tree.

