
Adversarial Search

• Problem: minimax takes too long.
• Solution: improve algorithm to ignore parts of

the tree that will definitely not be used
(assuming both players play optimally).

3 12 8 2 4 6 14 5 2

MAX

MIN

3 12 8 2 4 6 14 5 2

MAX

MIN 3 <=2

>=3

• Idea: for each node, keep track of the range of
possible values that minimax could produce
for that node.

• If we ever find ourselves at a node that we
know will never be selected during (optimal)
game play, we can "prune" it (end the
recursion on this part of the tree).

• Enhanced version of minimax is called
minimax with alpha-beta pruning.

Alpha-beta pruning
• Each node in the game tree needs two extra

variables, called alpha and beta.
• Alpha and beta are inherited from parent nodes.
– alpha = highest-value choice we’ve found so far (best

move for MAX)
– beta = lowest-value choice we’ve found so far (best

choice for MIN)
• If at a MAX node, we see a child node that has a

value >= than beta, short-circuit.
• If at a MIN node, we see a child node that has a

value <= than alpha, short-circuit.

Alpha-beta pruning
• Recall that minimax is a variant of depth-first

search. During the algorithm, we will only
consider nodes along the path from the root
node to the current node.

• At each node in the search, we will maintain
two variables:
– alpha (α) = highest numeric value we’ve found so

far on this path (best move for MAX)
– beta (β) = lowest numeric value we’ve found so far

on this path (best choice for MIN)

Alpha-beta pruning
• Alpha and beta are inherited from parent

nodes as we recursively descend the tree.

• If at a MAX node, we see a child node that has
a value >= than beta, short-circuit.

• If at a MIN node, we see a child node that has
a value <= than alpha, short-circuit.

• The results of alpha-beta depend on the order
in which moves are considered among the
children of a node.

• If possible, consider better moves first!

Real-world use of alpha-beta

• (Regular) minimax is normally run as a
preprocessing step to find the optimal move
from every possible situation.

• Minimax with alpha-beta can be run as a
preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

• Save states somewhere so if we re-encounter
them, we don't have to recalculate everything.

Real-world use of alpha-beta

• States get repeated in the game tree because
of transpositions.

• When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).
– Called a transposition table.

Real-world use of alpha-beta

• In the real-world, alpha-beta does not "pre-
generate" the game tree.
– The whole point of alpha-beta is to not have to

generate all the nodes.
• The DFS part of minimax/alpha-beta is what

generates the tree.

