
• The results of alpha-beta depend on the order
in which moves are considered among the
children of a node.

• If possible, consider better moves first!

Real-world use of alpha-beta

• (Regular) minimax is normally run as a
preprocessing step to find the optimal move
from every possible situation.

• Minimax with alpha-beta can be run as a
preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

• Save states somewhere so if we re-encounter
them, we don't have to recalculate everything.

Real-world use of alpha-beta

• States get repeated in the game tree because
of transpositions.

• When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).
– Called a transposition table.

Real-world use of alpha-beta

• In the real-world, alpha-beta does not "pre-
generate" the game tree.
– The whole point of alpha-beta is to not have to

generate all the nodes.
• The DFS part of minimax/alpha-beta is what

generates the tree.

Improving on alpha-beta

• Alpha-beta still has to search down to terminal
nodes sometimes.
– (and minimax has to search to terminal nodes all

the time!)
• Improvement idea: can we get away with only

looking a few moves ahead?

Heuristic minimax algorithm
h-minimax(s, d) =
heuristic-eval(s) if cutoff(s, d)
maxa in actions(s) h-minimax(result(s, a), d+1) if player(s)=MAX
mina in actions(s) h-minimax(result(s, a), d+1) if player(s)=MIN

result(s, a) means the new state generated
by taking action a in state s.

cutoff(s, d) is a boolean test that determines whether
we should stop the search and evaluate our position.

How to create a good evaluation
function?

• Trying to judge the probability of winning from
a given state.

• Typically use features: simple characteristics of
the game that correlate well with the
probability of winning.

One last point
O O O
X X X

O O O
X X X X

O O O
X X X X

O O O
X X X O X

O O O O
X X X X

O O O O
X X X X X

utility=1

etc…

MIN

MAX

MAX

utility=1

What if a game has a �chance
element�?

What if a game has a �chance
element�?

We know how
to value the other
nodes. How do we
value chance nodes?

Expected value

• The sum of the probability of each possible
outcome multiplied by its value:

• xi is a possible value of (random variable) X.
• pi is the probability of xi happening.

€

E(X) = pixi
i
∑

Expected minimax value
• Now three different

cases to evaluate,
rather than just two.
– MAX
– MIN
– CHANCE

EXPECTED-MINIMAX-VALUE(n) =
UTILITY(n), If terminal node
maxs Î successors(n) MINIMAX-VALUE(s), If MAX node
mins Î successors(n) MINIMAX-VALUE(s), If MIN node
ås Î successors(n) P(s) • EXPECTEDMINIMAX(s), If CHANCE node

