

Neural Networks

Review: Machine learning concepts

• Three forms:
• Supervised learning

• The agent is given some input-output pairs and it learns a function that maps the
input to the output. The learning phase is often called training, and the

• Example: training a naïve Bayes classifier.
• Unsupervised learning

• The agent learns patterns in the input even though no explicit output or feedback is
given.

• Example: clustering
• Reinforcement learning

• The agent is given feedback (rewards) during the steps of a task and the agent learns
a function from states to predicted rewards.

Supervised learning

• The agent is given some input-output pairs (labeled data) and it learns
a function that maps the input to the output.
• The input-output pairs given to the learning algorithm are called the training

set.
• The hope is that the function learned will do a good job at mapping

previously-unseen inputs (inputs not in the training set) to outputs.
• Sometimes, in order to evaluate how well a supervised learning algorithm

performs, we hold back some of our input-output pairs and have a separate
data set called the testing set that we use solely for evaluation, not for
training.

• Most common algorithms are categorized as classification algorithms
(output is categorical) or regression algorithms (output is numeric).

Unsupervised learning

• The agent learns patterns in the input even though no explicit output
or feedback is given.
• Training data is not labeled, so the goal is not to learn a function, but

rather to find commonalities in the training set, and use those
commonalities to draw inferences about new data.

Supervised learning
• Given a training set of N example input-output pairs:

• (x1, y1), (x2, y2), ..., (xN, yN)
• Each y is generated by an unknown function y = f(x).
• Goal: discover a function h that approximates the true

function f.
• h is called a hypothesis.
• Machine learning algorithms conduct searches for the

"best" f.
• We can measure the accuracy of a hypothesis on a test

set of examples that are distinct from the training set.
• A hypothesis generalizes well if it correctly predicts

examples from the test set (even though it has never
seen them before).

Supervised learning

(c)(a) (b) (d)
x x x x

f(x) f(x) f(x) f(x)

Supervised learning

• Poor generalization is sometimes caused by overfitting: our
hypothesis has learned the training set very well, but it has poor
accuracy on the test set.
• Analogous to "memorizing" the training set.

• When the output y is one of a finite set of values (e.g.,
sunny/cloudy/rainy or true/false), the learning problem is called
classification.
• When the output is a number, the problem is called regression.

• Yes, linear regression is a machine learning algorithm!

McCullough-Pitts neuron
• 1943: Warren McCullough and Walter Pitts, two electrical engineers,

develop the first model of an artificial neuron, called threshold logical
units.

Perceptron
• 1958: Frank Rosenblatt refined the McCullough-Pitts neuron into the
perceptron.

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(in j)

aj

gin jwi,j

w0,j

Bias Weight

ai

• NNs are composed of nodes or units connected by
directed links (a graph structure).
• Each unit receives a collection of numeral inputs

(a0, a1, ...) and produces a numeral output (aj).
• A link from unit i to unit j has a weight wij

associated with it.
• Each unit has a dummy input (a0) that is always set

to 1.

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(in j)

aj

gin jwi,j

w0,j

Bias Weight

ai

• Each unit j first computes a weighted sum of its
inputs:

• Then it applies an activation function g to this sum
to produce the output:

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(in j)

aj

gin jwi,j

w0,j

Bias Weight

ai

inj =
nX

i=0

wi,j · aj

aj = g(inj)

• The function g is typically either a hard threshold
function or the logistic function:

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(in j)

aj

gin jwi,j

w0,j

Bias Weight

ai

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8
 0

 0.5

 1

-6 -4 -2 0 2 4 6

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

1

1 + e�x

Neural networks

• Two basic types of networks.
• Feed-forward: Links are only in one direction (DAG).
• Recurrent: Allows outputs to feed back into inputs.

• System may reach a steady state or may exhibit oscillations or chaotic behavior.

• Feed-forward networks are usually arranged in layers, where each
layer only receives input from the previous layer.
• Single layer – all inputs connected directly to outputs
• Multi-layer - one or more hidden layers of units in between input and output.

Single layer feed forward networks
• One input layer (which is just

the raw inputs).
• One output layer (of

perceptron units).
• Example.

Single layer feed forward networks
• One input layer (which is just

the raw inputs).
• One output layer (of

perceptron units).
• Let's design a network

to add two bits together.
• Needs two inputs (x1, x2),

and two outputs (y3, y4).

Single layer feed forward networks

• There is an algorithm to change the weights of a single-layer network
to make the network learn any function...
• Initialize starting weights randomly
• Do until you want to stop (typically when accuracy is good enough or

weights stop changing):
• for each training example (x, y):

• use NN to get prediction of h(x)
• if h(x) differs from y, update all weights:
• w[i] = w[i] + (y – h(x)) * x[i]

• compute accuracy over entire training data = (# predicted correctly)/(# of
training examples)

Single layer feed forward networks

• There is an algorithm to change the weights of a single-layer network
to make the network learn any function...
• as long as it is linearly-separable!

Multi-layer feed forward networks

• McCullough, Pitts, and Rosenblatt were all aware of the linear
separability problem.
• If we add another layer of units between the input and output layers,

we can learn any function!
• http://playground.tensorflow.org/

Multi-layer feed forward networks

-4 -2 0 2 4x1
-4 -2 0 2 4

x2
0

0.2
0.4
0.6
0.8

1
hW(x1, x2)

-4 -2 0 2 4x1
-4 -2 0 2 4

x2
0

0.2
0.4
0.6
0.8

1
hW(x1, x2)

Multi-layer feed forward networks

• Learning is done through the backpropagation algorithm (backprop).
• Derived through calculus (we will skip).

Review perceptron learning
• Initialize starting weights randomly
• Do until you want to stop (typically when accuracy

is good enough or weights stop changing):
• for each training example (x, y):

• use NN to get prediction of h(x)
• if h(x) differs from y, update all weights:
• w[i] = w[i] + (y – h(x)) * x[i]

• compute accuracy over entire training data = (#
predicted correctly)/(# of training examples)

Review perceptron learning
• In the perceptron learning algorithm, where did the

update equation come from?
• w[i] = w[i] + (y – h(x)) * x[i]
• Recall h(x) = w[0] * x[0] + w[1] * x[1] + ...
• If y = 1, but h(x) = 0, then h(x) is too small.

• How do we increase h(x)?
• Increase the weights w[0], w[1], ...
• By how much?
• Proportionally to their corresponding input x[i] value.

Backprop highlights

Backprop highlights

Compare

• w[i] = w[i] + (y – h(x)) * x[i]

History

• 1943 – McCullough-Pitts neuron (can't be trained)
• 1958 – Rosenblatt's perceptron (can be trained)
• 1969 – Minsky and Papert publish Perceptrons, which explains the

limits of single-layer NNs.
• Ushers in first "AI Winter"

• 1982 – Backprop algorithm for NNs is published.
• Was known in the 60s! AI Winter eliminated a lot of AI funding and people

were discouraged from working on AI projects.
• 1980s – NNs rise again!
• 1989 – NNs are "universal approximators."

History

• 1989 – Convolutional NN used to do handwritten digit recognition for
ZIP codes. (Yann LeCun)

• 1990s – NNs start to be seen as "painfully slow." Takes a long time to
train them. At the same time, people start making more and more
modifications to make NNs predict things better – adding more layers,
making them recurrent etc.

• Mid 90s – 2nd AI Winter occurs when everything breaks down and the
community loses faith in NNs (too slow, too hard to train with
backprop, don't work well, nobody understands them anyway).
• Move to other models, especially probabilistic.

History

• Winter continues through early 2000s, though some people continue
working on NNs.
• 2006 paper: "A fast learning algorithm for deep belief nets"

• Key idea – don't initialize weights randomly. Start off with a round of
unsupervised learning to find reasonable initial values for the weights, then
finish with regular supervised learning.

• 2nd key idea – pure computational power of GPUs.
• Massively parallel! 70x faster than training on CPUs.

• 3rd key idea – huge data sets.

History

• 2010 – Turns out the
activation function
used makes a huge
difference on training
time and performance.

Lessons

• Our labeled datasets were thousands of times too small.
• Our computers were millions of times too slow.
• We initialized the weights in a stupid way.
• We used the wrong type of non-linearity.

