


Neural Networks



Review: Machine learning concepts

• Three forms:
• Supervised learning

• The agent is given some input-output pairs and it learns a function that maps the 
input to the output.  The learning phase is often called training, and the 

• Example: training a naïve Bayes classifier.
• Unsupervised learning

• The agent learns patterns in the input even though no explicit output or feedback is 
given.

• Example: clustering
• Reinforcement learning

• The agent is given feedback (rewards) during the steps of a task and the agent learns 
a function from states to predicted rewards. 



Supervised learning

• The agent is given some input-output pairs (labeled data) and it learns 
a function that maps the input to the output.
• The input-output pairs given to the learning algorithm are called the training 

set.
• The hope is that the function learned will do a good job at mapping 

previously-unseen inputs (inputs not in the training set) to outputs.
• Sometimes, in order to evaluate how well a supervised learning algorithm 

performs, we hold back some of our input-output pairs and have a separate 
data set called the testing set that we use solely for evaluation, not for 
training.

• Most common algorithms are categorized as classification algorithms 
(output is categorical) or regression algorithms (output is numeric).





Unsupervised learning

• The agent learns patterns in the input even though no explicit output 
or feedback is given.  
• Training data is not labeled, so the goal is not to learn a function, but 

rather to find commonalities in the training set, and use those 
commonalities to draw inferences about new data.





Supervised learning
• Given a training set of N example input-output pairs:

• (x1, y1), (x2, y2), ..., (xN, yN)
• Each y is generated by an unknown function y = f(x).
• Goal: discover a function h that approximates the true 

function f.
• h is called a hypothesis.
• Machine learning algorithms conduct searches for the 

"best" f.
• We can measure the accuracy of a hypothesis on a test 

set of examples that are distinct from the training set.
• A hypothesis generalizes well if it correctly predicts 

examples from the test set (even though it has never 
seen them before).



Supervised learning
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Supervised learning

• Poor generalization is sometimes caused by overfitting: our 
hypothesis has learned the training set very well, but it has poor 
accuracy on the test set.
• Analogous to "memorizing" the training set.

• When the output y is one of a finite set of values (e.g., 
sunny/cloudy/rainy or true/false), the learning problem is called 
classification.
• When the output is a number, the problem is called regression.

• Yes, linear regression is a machine learning algorithm!



McCullough-Pitts neuron
• 1943: Warren McCullough and Walter Pitts, two electrical engineers, 

develop the first model of an artificial neuron, called threshold logical 
units.



Perceptron
• 1958: Frank Rosenblatt refined the McCullough-Pitts neuron into the 
perceptron.
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• NNs are composed of nodes or units connected by 
directed links (a graph structure).
• Each unit receives a collection of numeral inputs 

(a0, a1, ...) and produces a numeral output (aj).
• A link from unit i to unit j has a weight wij

associated with it.
• Each unit has a dummy input (a0) that is always set 

to 1.
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• Each unit j first computes a weighted sum of its 
inputs:

• Then it applies an activation function g to this sum 
to produce the output:
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• The function g is typically either a hard threshold 
function or the logistic function:
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Neural networks

• Two basic types of networks.
• Feed-forward: Links are only in one direction (DAG).
• Recurrent: Allows outputs to feed back into inputs.

• System may reach a steady state or may exhibit oscillations or chaotic behavior.

• Feed-forward networks are usually arranged in layers, where each 
layer only receives input from the previous layer.
• Single layer – all inputs connected directly to outputs
• Multi-layer - one or more hidden layers of units in between input and output.



Single layer feed forward networks
• One input layer (which is just 

the raw inputs).
• One output layer (of

perceptron units).
• Example.



Single layer feed forward networks
• One input layer (which is just 

the raw inputs).
• One output layer (of

perceptron units).
• Let's design a network

to add two bits together.
• Needs two inputs (x1, x2), 

and two outputs (y3, y4).



Single layer feed forward networks

• There is an algorithm to change the weights of a single-layer network 
to make the network learn any function...
• Initialize starting weights randomly
• Do until you want to stop (typically when accuracy is good enough or 

weights stop changing):
• for each training example (x, y):

• use NN to get prediction of h(x)
• if h(x) differs from y, update all weights:
• w[i] = w[i] + (y – h(x)) * x[i]

• compute accuracy over entire training data = (# predicted correctly)/(# of 
training examples)



Single layer feed forward networks

• There is an algorithm to change the weights of a single-layer network 
to make the network learn any function...
• as long as it is linearly-separable!



Multi-layer feed forward networks

• McCullough, Pitts, and Rosenblatt were all aware of the linear 
separability problem.
• If we add another layer of units between the input and output layers, 

we can learn any function!
• http://playground.tensorflow.org/



Multi-layer feed forward networks
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Multi-layer feed forward networks

• Learning is done through the backpropagation algorithm (backprop).
• Derived through calculus (we will skip).



Review perceptron learning
• Initialize starting weights randomly
• Do until you want to stop (typically when accuracy 

is good enough or weights stop changing):
• for each training example (x, y):

• use NN to get prediction of h(x)
• if h(x) differs from y, update all weights:
• w[i] = w[i] + (y – h(x)) * x[i]

• compute accuracy over entire training data = (# 
predicted correctly)/(# of training examples)



Review perceptron learning
• In the perceptron learning algorithm, where did the 

update equation come from?
• w[i] = w[i] + (y – h(x)) * x[i]
• Recall h(x) = w[0] * x[0] + w[1] * x[1] + ...
• If y = 1, but h(x) = 0, then h(x) is too small.

• How do we increase h(x)?
• Increase the weights w[0], w[1], ...
• By how much?
• Proportionally to their corresponding input x[i] value.





Backprop highlights



Backprop highlights



Compare

• w[i] = w[i] + (y – h(x)) * x[i]



History

• 1943 – McCullough-Pitts neuron (can't be trained)
• 1958 – Rosenblatt's perceptron (can be trained)
• 1969 – Minsky and Papert publish Perceptrons, which explains the 

limits of single-layer NNs.
• Ushers in first "AI Winter"

• 1982 – Backprop algorithm for NNs is published.
• Was known in the 60s!  AI Winter eliminated a lot of AI funding and people 

were discouraged from working on AI projects.
• 1980s – NNs rise again!
• 1989 – NNs are "universal approximators."



History

• 1989 – Convolutional NN used to do handwritten digit recognition for 
ZIP codes.  (Yann LeCun)

• 1990s – NNs start to be seen as "painfully slow."  Takes a long time to 
train them.  At the same time, people start making more and more 
modifications to make NNs predict things better – adding more layers, 
making them recurrent etc.

• Mid 90s – 2nd AI Winter occurs when everything breaks down and the 
community loses faith in NNs (too slow, too hard to train with 
backprop, don't work well, nobody understands them anyway).
• Move to other models, especially probabilistic.



History

• Winter continues through early 2000s, though some people continue 
working on NNs.
• 2006 paper: "A fast learning algorithm for deep belief nets"

• Key idea – don't initialize weights randomly.  Start off with a round of 
unsupervised learning to find reasonable initial values for the weights, then 
finish with regular supervised learning.

• 2nd key idea – pure computational power of GPUs.
• Massively parallel!  70x faster than training on CPUs.

• 3rd key idea – huge data sets.



History

• 2010 – Turns out the 
activation function 
used makes a huge 
difference on training 
time and performance.



Lessons

• Our labeled datasets were thousands of times too small.
• Our computers were millions of times too slow.
• We initialized the weights in a stupid way.
• We used the wrong type of non-linearity.


