

Review: Machine learning concepts

 Three forms:

* Supervised learning

* The agent is given some input-output pairs and it learns a function that maps the
input to the output. The learning phase is often called training, and the

* Example: training a naive Bayes classifier.

* Unsupervised learning
* The agent learns patterns in the input even though no explicit output or feedback is
given.
e Example: clustering

* Reinforcement learning
* The agent is given feedback (rewards) during the steps of a task and the agent learns
a function from states to predicted rewards.

Supervised learning

* The agent is given some input-output pairs (/labeled data) and it learns
a function that maps the input to the output.

* The input-output pairs given to the learning algorithm are called the training
set.

* The hope is that the function learned will do a good job at mapping
previously-unseen inputs (inputs not in the training set) to outputs.

* Sometimes, in order to evaluate how well a supervised learning algorithm
performs, we hold back some of our input-output pairs and have a separate

data set called the testing set that we use solely for evaluation, not for
training.

* Most common algorithms are categorized as classification algorithms
(output is categorical) or regression algorithms (output is numeric).

Supervised Learning
(Classification Algorithm)

é Duck

4 Duck
* Supervised » Predictive
5 Not Duck Learning Model

Predictive
Model

Unsupervised learning

* The agent learns patterns in the input even though no explicit output
or feedback is given.

* Training data is not labeled, so the goal is not to learn a function, but
rather to find commonalities in the training set, and use those
commonalities to draw inferences about new data.

Unsupervised Learning
(Clustering Algorithm)

i
> ()
g

4

.
®

Supervised learning

 Given a training set of N example input-output pairs:
¢ (Xll yl)l (XZI y2)r Xy (XNI yN)
e Eachy is generated by an unknown function y = f(x).

» Goal: discover a function h that approximates the true
function f.

* his called a hypothesis.

* Machine learning algorithms conduct searches for the
"best" f.

* We can measure the accuracy of a hypothesis on a test
set of examples that are distinct from the training set.

* A hypothesis generalizes well if it correctly predicts
examples from the test set (even though it has never
seen them before).

Supervised learning

J®)

(a)

B X

Jx)

B X

B X

- X

Supervised learning

* Poor generalization is sometimes caused by overfitting: our
hypothesis has learned the training set very well, but it has poor
accuracy on the test set.

* Analogous to "memorizing" the training set.

 When the output y is one of a finite set of values (e.g.,
sunny/cloudy/rainy or true/false), the learning problem is called
classification.

* When the output is a number, the problem is called regression.
* Yes, linear regression is a machine learning algorithm!

McCullough-Pitts neuron

* 1943: Warren McCullough and Walter Pitts, two electrical engineers,
develop the first model of an artificial neuron, called threshold logical
units.

Inputs Weights
Wi

s

2

Threshold T

In

Perceptron

» 1958: Frank Rosenblatt refined the McCullough-Pitts neuron into the
perceptron.

Bias Weight

o= = o(in.
0 Wwo, a;j= g(in;)

Input Input Activation Output
Links Function Function Output Links

Bias Weight

ap= .= o(in.
0 W, a;= g(in;)
Wij
) Z aj \:
Input Input Activation Output
Links Function Function Output Links

* NNs are composed of nodes or units connected by
directed links (a graph structure).

* Each unit receives a collection of numeral inputs
(ap, @y, ...) and produces a numeral output (a)).

* A link from unitj to unit j has a weight w;
associated with it.

* Each unit has a dummy input (a,) that is always set
to 1.

Bias Weight

ap= .= o(in.
0 W, a;= g(in;)
Wij
) Z aj \:
Input Input Activation Output
Links Function Function Output Links

e Each unit j first computes a weighted sum of its
inputs: n
My = E :wi,j "
1=0

* Then it applies an activation function g to this sum
to produce the output: o .
a; = g(in;)

Bias Weight
ap= 1

WO,j

i,

n;
Wi /
a; —— E:

/

Input

Input
Links

a;= g(in;)

8

Function

Activation
Function

a i >
Output
Output Lin11)<s

* The function g is typically either a hard threshold

function or the logistic function: 1
1+ 6_5’3
1 —— 1 1 ,
08 / //// ////////////;;/,/”
///// i /////////
06 Y
05 | 05 0.4 w”’;/////// //
0.2)
0 - 4
0 0 0

8-6-4-202 46 8

-6 4 -2 0 2 4 6

Neural networks

* Two basic types of networks.
* Feed-forward: Links are only in one direction (DAG).

» Recurrent: Allows outputs to feed back into inputs.
* System may reach a steady state or may exhibit oscillations or chaotic behavior.

* Feed-forward networks are usually arranged in layers, where each
layer only receives input from the previous layer.
 Single layer — all inputs connected directly to outputs
* Multi-layer - one or more hidden layers of units in between input and output.

Single layer feed forward networks
* One input layer (which is just
the raw inputs).

* One output layer (of
perceptron units).

* Example.

Single layer feed forward networks
* One input layer (which is just
the raw inputs).

* One output layer (of
perceptron units).

* Let's design a network
to add two bits together.

* Needs two inputs (x4, X,),
and two outputs (ys, V)

Single layer feed forward networks

* There is an algorithm to change the weights of a single-layer network
to make the network learn any function...

* Initialize starting weights randomly

* Do until you want to stop (typically when accuracy is good enough or
weights stop changing):

 for each training example (x, y):
* use NN to get prediction of h(x)
* if h(x) differs from y, update all weights:
* wli] = w[i] + (y — h(x)) * x[i]

e compute accuracy over entire training data = (# predicted correctly)/(# of

training examples)

Single layer feed forward networks

* There is an algorithm to change the weights of a single-layer network
to make the network learn any function...

* as long as it is linearly-separable!

Multi-layer feed forward networks

* McCullough, Pitts, and Rosenblatt were all aware of the linear
separability problem.

* If we add another layer of units between the input and output layers,
we can learn any function!

* http://playground.tensorflow.org/

Multi-layer feed forward networks

Multi-layer feed forward networks

* Learning is done through the backpropagation algorithm (backprop).
* Derived through calculus (we will skip).

Review perceptron learning

* Initialize starting weights randomly

* Do until you want to stop (typically when accuracy
is good enough or weights stop changing):

 for each training example (x, y):
» use NN to get prediction of h(x)
* if h(x) differs from y, update all weights:
 wli] = w[i] + (y —h(x)) * x[i]

e compute accuracy over entire training data = (#

predicted correctly)/(# of training examples)

Review perceptron learning

* In the perceptron learning algorithm, where did the
update equation come from?

* wli] = wli] + (y — h(x)) * x[i]
e Recall h(x) = w[0] * x[0] + w[1] * x[1] + ...
e If y=1, but h(x) =0, then h(x) is too small.
* How do we increase h(x)?
* Increase the weights w[0], w[1], ...

e By how much?
* Proportionally to their corresponding input x[i] value.

repeat
for each weight w; ; in network do
w;,; +— a small random number
for each example (x,y) in ezamples do
/ * Propagate the inputs forward to compute the outputs * /
for each node ¢ in the input layer do
Q; «— I;
for /=2to Ldo
for each node j in layer £ do
MG D Wij G
a; g(in;)
/ * Propagate deltas backward from output layer to input layer =/
for each node j in the output layer do
Alj] —g'(in;) x (y; — aj)
for{=L—1to1do
for each node i in layer £ do
Ali] — g'(ne) 32, wij Alj]
/ * Update every weight in network using deltas * /
for each weight w; ; in network do
Wi Wi + a X a; X A[j]
until some stopping criterion is satisfied
return network

Backprop highlights

repeat
for each weight w; ; in network do
w;, ; +— a small random number
for each example (x,y) in ezamples do
/ » Propagate the inputs forward to compute the outputs * /
for each node ¢ in the input layer do
Qi < T4
for /=2 to L do
for each node 5 in layer £ do
Ny — D2, Wij G
aj < g(in;)

Backprop highlights

/ = Propagate deltas backward from output layer to input layer * /
for each node 5 in the output layer do

Alj] < g'(in;) x (y; — aj)
for{=L—1to1do

for each node ¢ in layer £ do

Alfi] < g'(in:) 325 wi,; AlJ]

/ = Update every weight in network using deltas * /
for each weight w; ; in network do

Wi Wi + & X Qi X A[]]

Compare

* wli] = wl[i] + (y — h(x)) * x[i]
Alj] —g'(inj) x (y; — aj)
Ali] g’ (in:) >, wi,; Alj]

Wi —Wij + @ X a; X A[j]

History

e 1943 — McCullough-Pitts neuron (can't be trained)

» 1958 — Rosenblatt's perceptron (can be trained)

* 1969 — Minsky and Papert publish Perceptrons, which explains the
limits of single-layer NNs.
* Ushers in first "Al Winter"

» 1982 — Backprop algorithm for NNs is published.

* Was known in the 60s! Al Winter eliminated a lot of Al funding and people
were discouraged from working on Al projects.

* 1980s — NNs rise again!
* 1989 — NNs are "universal approximators.”

History

* 1989 — Convolutional NN used to do handwritten digit recognition for
ZIP codes. (Yann LeCun)
* 1990s — NNs start to be seen as "painfully slow." Takes a long time to

train them. At the same time, people start making more and more
modifications to make NNs predict things better — adding more layers,

making them recurrent etc.

* Mid 90s — 2" Al Winter occurs when everything breaks down and the

community loses faith in NNs (too slow, too hard to train with
backprop, don't work well, nobody understands them anyway).

* Move to other models, especially probabilistic.

History

* Winter continues through early 2000s, though some people continue
working on NNs.

* 2006 paper: "A fast learning algorithm for deep belief nets"

* Key idea — don't initialize weights randomly. Start off with a round of
unsupervised learning to find reasonable initial values for the weights, then
finish with regular supervised learning.

e 2"d key idea — pure computational power of GPUs.
* Massively parallel! 70x faster than training on CPUs.

« 3" key idea — huge data sets.

History

e 2010 — Turns out the
activation function
used makes a huge
difference on training

time and performance.

m— sigmoid
| ===thanh
== RelLU

Lessons

* Our labeled datasets were thousands of times too small.
e Our computers were millions of times too slow.

* We initialized the weights in a stupid way.

* We used the wrong type of non-linearity.

