
Reinforcement Learning

Environments

• Fully-observable vs partially-observable
• Single agent vs multiple agents
• Deterministic vs stochastic
• Episodic vs sequential
• Static or dynamic
• Discrete or continuous

What is reinforcement learning?

• Three machine learning paradigms:
– Supervised learning
– Unsupervised learning (overlaps w/ data mining)
– Reinforcement learning

• In reinforcement learning, the agent receives
incremental pieces of feedback, called
rewards, that it uses to judge whether it is
acting correctly or not.

Examples of real-life RL

• Learning to play chess.
• Animals (or toddlers) learning to walk.
• Driving to school or work in the morning.

• Key idea: Most RL tasks are episodic, meaning
they repeat many times.
– So unlike in other AI problems where you have

one shot to get it right, in RL, it's OK to take time
to try different things to see what's best.

n-armed bandit problem
• You have n slot machines.
• When you play a slot machine,

it provides you a reward (negative
or positive) according to some fixed
probability distribution.

• Each machine may have a different
probability distribution, and you don't know the
distributions ahead of time.

• You want to maximize the amount of reward
(money) you get.

• In what order and how many times do you play
the machines?

RL problems
• Every RL problem is structured similarly.
• We have an environment, which consists of a set

of states, and actions that can be taken in various
states.
– Environment is often stochastic (there is an element

of chance).
– Environment can be fully or partially observable (here,

we will focus on fully observable).
• Our RL agent wishes to learn a policy, π, a

function that maps states to actions.
– π(s) tells you what action to take in a state s.

What is the goal in RL?

• In other AI problems, the "goal" is to get to a
certain state. Not in RL!

• A RL environment gives feedback every time the
agent takes an action. This is called a reward.
– Rewards are usually numbers.
– Goal: Agent wants to maximize the amount of reward

it gets over time.
– Critical point: Rewards are given by the environment,

not the agent.

Mathematics of rewards
• Assume our rewards are r0, r1, r2, …
• What expression represents our total

rewards?
• How do we maximize this? Is this a good idea?
• Use discounting: at each time step, the reward

is discounted by a factor of γ (called the
discount rate).

• Future rewards from time t =
rt + �rt+1 + �2rt+2 + · · · =

1X

k=0

�krt+k

Markov Decision Processes
• An MDP has a set of states, S, and a set of

actions, A(s), for every state s in S.
• An MDP encodes the probability of

transitioning from state s to state s' on action
a: P(s' | s, a)

• RL also requires a reward function, usually
denoted by R(s, a, s') = reward for being in
state s, taking action a, and arriving in state s'.

• An MDP is a Markov chain that allows for
outside actions to influence the transitions.

• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:

– Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

– Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

– Any movement that would take you off the board moves you as
far in that direction as possible or keeps you where you are.

Value functions
• Almost all RL algorithms are based around

computing, estimating, or learning value functions.
• A value function represents the expected future

reward from either a state, or a state-action pair.
– Vπ (s): If we are in state s, and follow policy π, what is the

total future reward we will see, on average?
– Qπ (s, a): If we are in state s, and take action a, then

follow policy π, what is the total future reward we will
see, on average?

Optimal policies

• Given an MDP, there is always a "best" policy,
called π*.

• The point of RL is to discover this policy by
employing various algorithms.
– Some algorithms can use sub-optimal policies to

discover π*.
• We denote the value functions corresponding

to the optimal policy by V*(s) and Q*(s, a).

Bellman equations

• The V*(s) and Q*(s, a)
functions always satisfy
certain recursive
relationships for any MDP.

• These relationships, in the
form of equations, are
called the Bellman
equations.

Recursive relationship of V* and Q*:

V ⇤(s) = max
a

Q⇤(s, a)

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

The expected future rewards from a state s is equal to
the expected future rewards obtained by choosing the
best action from that state.

The expected future rewards obtained by taking an
action from a state is the weighted average of the
expected future rewards from the new state.

Bellman equations

• No closed-form solution in general.
• Instead, most RL algorithms use these equations

in various ways to estimate V* or Q*. An optimal
policy can be derived from either V* or Q*.

V ⇤(s) = max
a

X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �max

a0
Q⇤(s0, a0)

⇤

RL algorithms
• Goal of RL algorithm: estimate V* or Q* (and then

derive optimal policy π* from that.
• One way of classifying RL algorithms by whether or not

the algorithm requires a full model of the environment.
• In other words, do we know P(s' | s, a) and R(s, a, s')

for all combinations of s, a, s'?
– If we have this information (uncommon in the real world),

we can estimate V* or Q* directly with very good accuracy.
– If we don't have this information, we can estimate V* or

Q* from experience or simulations.

Value iteration

• Value iteration is an algorithm that computes
an optimal policy, given a full model of the
environment.

• Algorithm is derived directly from the Bellman
equations (usually for V*, but can use Q* as
well).

Value iteration
• Two steps:
• Estimate V(s) for every state.
– For each state:

• Simulate taking every possible action from that state and
examine the probabilities for transitioning into every
possible successor state. Weight the rewards you would
receive by the probabilities that you receive them.

• Find the action that gave you the most reward, and
remember how much reward it was.

• Compute the optimal policy by doing the first
step again, but this time remember the actions
that give you the most reward, not the reward
itself.

Value iteration
• Value iteration maintains a table of V values,

one for each state. Each value V[s] eventually
converges to the true value V*(s).

• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:

– Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

– Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

– Any movement that would take you off the board moves you as
far in that direction as possible or keeps you where you are.

• γ (gamma) = 0.9

V[s] values converge to:

6.47 7.91 8.56 0

How do we use these to compute π(s)?

Computing an optimal policy from V[s]

• Last step of the value iteration algorithm:

• In other words, run one last time through the
value iteration equation for each state, and
pick the action a for each state s that
maximizes the expected reward.

⇡(s) = argmax
a

X

s0

P (s0 | s, a)[R(s, a, s0) + �V [s0]]

V[s] values converge to:

6.47 7.91 8.56 0
Optimal policy:

A B B ---

Review

• Value iteration requires a perfect model of the
environment.
– You need to know P(s' | s, a) and R(s, a, s') ahead

of time for all combinations of s, a, and s'.
– Optimal V or Q values are computed directly from

the environment using the Bellman equations.
• Often impossible or impractical.

Simple Blackjack
• Costs $5 to play.
• Infinite deck of shuffled cards, labeled 1, 2, 3.
– (so equal prob of drawing each number at any time)

• You start with no cards. At every turn, you can
either "hit" (take a card) or "stay" (end the game).
Your goal is to get to a sum of 6 without going
over, in which case you lose the game.

• You make all your decisions first, then the dealer
plays the same game.

• If your sum is higher than the dealer's, you win
$10 (your original $5 back, plus another $5).
If lower, you lose (your original $5).
If the same, draw (get your $5 back).

Simple Blackjack
• To set this up as an MDP, we need to automate the 2nd

player (the dealer) in the MDP.
• Usually at casinos, dealers have simple rules they have

to follow anyway about when to hit and when to stay.
• Is it ever optimal to "stay" from S0-S3?
• Assume that on average, if we "stay" from S4/S5/S6,

and then the dealer plays, here's what happens:
– Stay from S4, we win $3 (net $-2).
– Stay from S5, we win $6 (net $1).
– Stay from S6, we win $7 (net $2).

• Do you even want to play this game? (Does it make
financial sense?)

Simple Blackjack
• What should gamma be?
• Assume we have finished one round of value

iteration.
• Complete the second round of value iteration

for S1—S6.

Learning from experience

• What if we don't know the exact model of the
environment, but we are allowed to sample
from it?
– That is, we are allowed to "practice" the MDP as

much as we want.
– This echoes real-life experience.

• One way to do this is temporal difference
learning (TD learning).

Temporal difference learning

• We want to compute V(s) or Q(s, a).
• TD learning uses the idea of taking lots of

samples of V or Q (from the MDP) and
averaging them to get a good estimate.

• Let's see how TD learning works.

Example: Rolling a die

• Basic TD equation:
• V(s) = V(s) + !(reward – V(s))
• But what if our reward comes in pieces, not all

at once?
• total reward = one step reward + rest of reward
• total reward = rt + "V(s')
• V(s) = V(s) + ![rt + "V(s') – V(s)]

Q-learning

• Q-learning is a temporal difference learning
algorithm that learns optimal values for Q
(instead of V, as value iteration did).

• The algorithm works in episodes, where the
agent "practices" (aka samples) the MDP to
learn which actions obtain the most rewards.

• Like value iteration, table of Q values
eventually converge to Q*.
(under certain conditions)

• Notice the Q[s, a] update equation is very similar
to the driving time update equation.
– (The extra γ maxa' Q[s', a'] piece is to handle future

rewards.)
– alpha (0 < α <= 1) is called the learning rate; it controls

how fast the algorithm learns. In stochastic
environments, alpha is usually small, such as 0.1.

• Note: The "choose action" step does not mean you
choose the best action according to your table of Q
values.

• You must balance exploration and exploitation; like in
the real world, the algorithm learns best when you
"practice" the best policy often, but sometimes explore
other actions that may be better in the long run.

• Often the "choose action" step uses policy that mostly
exploits but sometimes explores.

• One common idea: (epsilon-greedy policy)
– With probability 1 - ε, pick the best action (the "a" that

maximizes Q[s, a].
– With probability ε, pick a random action.

• Also common to start with large ε and decrease over
time while learning.

• What makes Q-learning so amazing is that the
Q-values still converge to the optimal Q*
values even though the algorithm itself is not
following the optimal policy!

Q-learning with Blackjack

• Update formula:

• Sample episodes (states and actions):
S0 è Hit è S3 è Stay è End
S0 è Hit è S3 è Hit è S6 è Stay è End
S0 è Hit è S3 è Hit è S5 è Stay è End

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

2-Player Q-learning
Normal update equation:

Normally we always maximize our rewards.
Consider 2-player Q-learning with player A
maximizing and player B minimizing (as in
minimax).

Why does this break the update equation?

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

2-Player Q-learning
Player A's update equation:

Player B's update equation:

Player A's optimal policy output:

Player B's optimal policy output:

Q[s, a] Q[s, a] + ↵
h
r + �min

a0
Q[s0, a0]�Q[s, a]

i

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

⇡(s) = argmax
a

Q[s, a]

⇡(s) = argmin
a

Q[s, a]

