
Reinforcement Learning



Environments

• Fully-observable vs partially-observable
• Single agent vs multiple agents
• Deterministic vs stochastic
• Episodic vs sequential
• Static or dynamic
• Discrete or continuous



What is reinforcement learning?

• Three machine learning paradigms:
– Supervised learning
– Unsupervised learning (overlaps w/ data mining)
– Reinforcement learning

• In reinforcement learning, the agent receives 
incremental pieces of feedback, called 
rewards, that it uses to judge whether it is 
acting correctly or not.



Examples of real-life RL

• Learning to play chess.
• Animals (or toddlers) learning to walk.
• Driving to school or work in the morning.

• Key idea: Most RL tasks are episodic, meaning 
they repeat many times.
– So unlike in other AI problems where you have 

one shot to get it right, in RL, it's OK to take time 
to try different things to see what's best.



n-armed bandit problem
• You have n slot machines.
• When you play a slot machine, 

it provides you a reward (negative 
or positive) according to some fixed 
probability distribution.

• Each machine may have a different 
probability distribution, and you don't know the 
distributions ahead of time.

• You want to maximize the amount of reward 
(money) you get.

• In what order and how many times do you play 
the machines?



RL problems
• Every RL problem is structured similarly.
• We have an environment, which consists of a set 

of states, and actions that can be taken in various 
states.  
– Environment is often stochastic (there is an element 

of chance).
– Environment can be fully or partially observable (here, 

we will focus on fully observable).
• Our RL agent wishes to learn a policy, π, a 

function that maps states to actions.
– π(s) tells you what action to take in a state s.



What is the goal in RL?

• In other AI problems, the "goal" is to get to a 
certain state.  Not in RL!

• A RL environment gives feedback every time the 
agent takes an action.  This is called a reward.
– Rewards are usually numbers.
– Goal: Agent wants to maximize the amount of reward 

it gets over time.
– Critical point: Rewards are given by the environment, 

not the agent.



Mathematics of rewards
• Assume our rewards are r0, r1, r2, …
• What expression represents our total 

rewards?
• How do we maximize this? Is this a good idea?
• Use discounting: at each time step, the reward 

is discounted by a factor of γ (called the 
discount rate).

• Future rewards from time t = 
rt + �rt+1 + �2rt+2 + · · · =

1X

k=0

�krt+k



Markov Decision Processes
• An MDP has a set of states, S, and a set of 

actions, A(s), for every state s in S.
• An MDP encodes the probability of 

transitioning from state s to state s' on action 
a:  P(s' | s, a)

• RL also requires a reward function, usually 
denoted by R(s, a, s') = reward for being in 
state s, taking action a, and arriving in state s'.

• An MDP is a Markov chain that allows for 
outside actions to influence the transitions.



• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:

– Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

– Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

– Any movement that would take you off the board moves you as 
far in that direction as possible or keeps you where you are.



Value functions
• Almost all RL algorithms are based around 

computing, estimating, or learning value functions.
• A value function represents the expected future 

reward from either a state, or a state-action pair.
– Vπ (s): If we are in state s, and follow policy π, what is the 

total future reward we will see, on average?
– Qπ (s, a): If we are in state s, and take action a, then 

follow policy π, what is the total future reward we will 
see, on average?



Optimal policies

• Given an MDP, there is always a "best" policy, 
called π*.

• The point of RL is to discover this policy by 
employing various algorithms.
– Some algorithms can use sub-optimal policies to 

discover π*.
• We denote the value functions corresponding 

to the optimal policy by V*(s) and Q*(s, a).



Bellman equations

• The V*(s) and Q*(s, a) 
functions always satisfy 
certain recursive 
relationships for any MDP.

• These relationships, in the 
form of equations, are 
called the Bellman 
equations.



Recursive relationship of V* and Q*:

V ⇤(s) = max
a

Q⇤(s, a)

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

The expected future rewards from a state s is equal to 
the expected future rewards obtained by choosing the 
best action from that state.

The expected future rewards obtained by taking an 
action from a state is the weighted average of the 
expected future rewards from the new state.



Bellman equations

• No closed-form solution in general.
• Instead, most RL algorithms use these equations 

in various ways to estimate V* or Q*.  An optimal 
policy can be derived from either V* or Q*.

V ⇤(s) = max
a

X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �max

a0
Q⇤(s0, a0)

⇤



RL algorithms
• Goal of RL algorithm: estimate V* or Q* (and then 

derive optimal policy π* from that.
• One way of classifying RL algorithms by whether or not 

the algorithm requires a full model of the environment.
• In other words, do we know P(s' | s, a) and R(s, a, s') 

for all combinations of s, a, s'?
– If we have this information (uncommon in the real world), 

we can estimate V* or Q* directly with very good accuracy.
– If we don't have this information, we can estimate V* or 

Q* from experience or simulations.



Value iteration

• Value iteration is an algorithm that computes 
an optimal policy, given a full model of the 
environment.

• Algorithm is derived directly from the Bellman 
equations (usually for V*, but can use Q* as 
well).



Value iteration
• Two steps:
• Estimate V(s) for every state.
– For each state:

• Simulate taking every possible action from that state and 
examine the probabilities for transitioning into every 
possible successor state.  Weight the rewards you would 
receive by the probabilities that you receive them.

• Find the action that gave you the most reward, and 
remember how much reward it was.

• Compute the optimal policy by doing the first 
step again, but this time remember the actions 
that give you the most reward, not the reward 
itself.



Value iteration
• Value iteration maintains a table of V values, 

one for each state.  Each value V[s] eventually 
converges to the true value V*(s).



• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:

– Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

– Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

– Any movement that would take you off the board moves you as 
far in that direction as possible or keeps you where you are.

• γ (gamma) = 0.9



V[s] values converge to:

6.47            7.91            8.56                0

How do we use these to compute π(s)?  



Computing an optimal policy from V[s]

• Last step of the value iteration algorithm:

• In other words, run one last time through the 
value iteration equation for each state, and 
pick the action a for each state s that 
maximizes the expected reward.

⇡(s) = argmax
a

X

s0

P (s0 | s, a)[R(s, a, s0) + �V [s0]]



V[s] values converge to:

6.47            7.91            8.56                0
Optimal policy:

A                  B                  B                 ---



Review

• Value iteration requires a perfect model of the 
environment.
– You need to know P(s' | s, a) and R(s, a, s') ahead 

of time for all combinations of s, a, and s'.
– Optimal V or Q values are computed directly from 

the environment using the Bellman equations.
• Often impossible or impractical.



Simple Blackjack
• Costs $5 to play.
• Infinite deck of shuffled cards, labeled 1, 2, 3.
– (so equal prob of drawing each number at any time)

• You start with no cards.  At every turn, you can 
either "hit" (take a card) or "stay" (end the game).  
Your goal is to get to a sum of 6 without going 
over, in which case you lose the game.

• You make all your decisions first, then the dealer 
plays the same game.

• If your sum is higher than the dealer's, you win 
$10 (your original $5 back, plus another $5).  
If lower, you lose (your original $5).  
If the same, draw (get your $5 back).



Simple Blackjack
• To set this up as an MDP, we need to automate the 2nd

player (the dealer) in the MDP.
• Usually at casinos, dealers have simple rules they have 

to follow anyway about when to hit and when to stay.
• Is it ever optimal to "stay" from S0-S3?
• Assume that on average, if we "stay" from S4/S5/S6, 

and then the dealer plays, here's what happens:
– Stay from S4, we win $3 (net $-2).
– Stay from S5, we win $6 (net $1).
– Stay from S6, we win $7 (net $2).

• Do you even want to play this game? (Does it make 
financial sense?)



Simple Blackjack
• What should gamma be?
• Assume we have finished one round of value 

iteration.
• Complete the second round of value iteration 

for S1—S6.



Learning from experience

• What if we don't know the exact model of the 
environment, but we are allowed to sample
from it?
– That is, we are allowed to "practice" the MDP as 

much as we want.
– This echoes real-life experience.

• One way to do this is temporal difference 
learning (TD learning).



Temporal difference learning

• We want to compute V(s) or Q(s, a).
• TD learning uses the idea of taking lots of 

samples of V or Q (from the MDP) and 
averaging them to get a good estimate.

• Let's see how TD learning works.





Example: Rolling a die

• Basic TD equation:
• V(s) = V(s) + !(reward – V(s))
• But what if our reward comes in pieces, not all 

at once?
• total reward = one step reward + rest of reward
• total reward = rt + "V(s')
• V(s) = V(s) + ![rt + "V(s') – V(s)]



Q-learning

• Q-learning is a temporal difference learning 
algorithm that learns optimal values for Q 
(instead of V, as value iteration did).

• The algorithm works in episodes, where the 
agent "practices" (aka samples) the MDP to 
learn which actions obtain the most rewards.

• Like value iteration, table of Q values 
eventually converge to Q*.
(under certain conditions)



• Notice the Q[s, a] update equation is very similar 
to the driving time update equation.
– (The extra γ maxa' Q[s', a'] piece is to handle future 

rewards.)
– alpha (0 < α <= 1) is called the learning rate; it controls 

how fast the algorithm learns.  In stochastic 
environments, alpha is usually small, such as 0.1.



• Note: The "choose action" step does not mean you 
choose the best action according to your table of Q 
values.

• You must balance exploration and exploitation; like in 
the real world, the algorithm learns best when you 
"practice" the best policy often, but sometimes explore 
other actions that may be better in the long run.



• Often the "choose action" step uses policy that mostly 
exploits but sometimes explores.

• One common idea: (epsilon-greedy policy)
– With probability 1 - ε, pick the best action (the "a" that 

maximizes Q[s, a].
– With probability ε, pick a random action.

• Also common to start with large ε and decrease over 
time while learning.



• What makes Q-learning so amazing is that the 
Q-values still converge to the optimal Q* 
values even though the algorithm itself is not 
following the optimal policy!



Q-learning with Blackjack

• Update formula:

• Sample episodes (states and actions):
S0 è Hit è S3 è Stay è End
S0 è Hit è S3 è Hit è S6 è Stay è End
S0 è Hit è S3 è Hit è S5 è Stay è End

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i



2-Player Q-learning
Normal update equation:

Normally we always maximize our rewards.  
Consider 2-player Q-learning with player A 
maximizing and player B minimizing (as in 
minimax).  

Why does this break the update equation?

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i



2-Player Q-learning
Player A's update equation:

Player B's update equation:

Player A's optimal policy output:

Player B's optimal policy output:

Q[s, a] Q[s, a] + ↵
h
r + �min

a0
Q[s0, a0]�Q[s, a]

i

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

⇡(s) = argmax
a

Q[s, a]

⇡(s) = argmin
a

Q[s, a]


