
Artificial	Intelligence	Homework	2	
	

1. (For	this	problem,	you	will	probably	want	to	print	out	these	two	pages	and	turn	them	in	with	
the	rest	of	your	written	work.)	
	
Run	minimax	(no	alpha-beta)	on	the	following	game	tree,	filling	in	values	for	each	
internal	node.		The	first	player	is	MAX	(triangle	pointing	up).		MIN	nodes	are	downward-
pointing	triangles.	

	

	
	
	

	 	

7

4 7

36 12 6

8 5

-1 6 12



	
2. Run	minimax	with	alpha-beta	pruning	on	the	same	tree,	with	left-to-right	node	

expansion	(that	is,	consider	the	children	of	a	node	in	left-to-right	order,	as	we’ve	done	
normally).		Show	the	values	of	alpha	and	beta	at	each	node	(you	may	want	to	copy	this	
tree	onto	another	sheet	of	paper	if	you	need	more	room),	which	values	get	passed	up	the	
tree	by	using	arrows,	and	which	nodes	are	not	examined	at	all	by	crossing	them	out.	

	
	

3. Run	minimax	with	alpha-beta	pruning,	but	now	consider	the	children	of	a	node	in	
right-to-left	order.	
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4. Consider	the	following	Bayes	network:	

	 	
	
Here	are	the	CPTs	(conditional	probability	tables)	for	this	network:	
	
(I	follow	the	book’s	convention	of	using	uppercase	letters	to	stand	for	a	random	variable,	
and	lowercase	letters	to	for	a	specific	assignment	of	a	value	to	the	random	variable.		For	
instance	“A”	is	a	random	variable,	but	“a”	is	the	specific	setting	of		
“A	=	true”	and	“~a”	means	“A	=	false.”)	
	
P(a)	=	0.4	
	
P(b	|	a)	=	0.7	 	 P(b	|	~a)	=	0.3	
	
P(c	|	b)	=	0.2	 	 P(c	|	~b)	=	0.6	
	
P(d	|	b)	=	0.9	 	 P(d	|	~b)	=	0.5		
	

a. Suppose	we	know	the	value	of	random	variables	C	and	D;	specifically,	assume	C	is	
true	and	D	is	false.		Use	the	Bayes	net	exact	inference	algorithm	to	calculate		
P(A	|	c,	~d).		(This	means	calculate	the	probability	of	A	being	true	[and	then	being	
false]	given	the	values	of	C	and	D).		Show	all	of	your	work,	including	the	steps	
involving	the	definition	of	conditional	probability,	where	you	introduce	the	
normalization	constant,	the	marginalization	step,	the	re-arrangement	of	the	
summations	to	make	the	calculation	as	efficient	as	possible,	drawing	the	tree	to	
show	your	calculations,	and	the	normalization	step	at	the	end.		
	

b. Suppose	we	know	the	value	of	random	variable	B	is	false,	and	we	wish	to	calculate		
P(A	|	~b).		Similar	to	part	(b)	above,	illustrate	how	the	exact	inference	algorithm	
works,	but	only	up	through	re-arranging	the	summations.		After	you	have	re-
arranged	the	summations,	there	will	be	an	extra	mathematical	step	you	can	do	to	
make	your	calculation	much	easier.		What	is	this	step,	and	what	general	
conclusions	can	you	draw	(about	any	Bayes	net)	that	tell	you	when	you	will	have	
such	a	step?	
Hint:	What	is	 P 𝑑	 	~𝑏)' 	?	
	
Hint	2:	read	the	last	paragraph	before	the	start	of	section	14.4.3	on	page	528.	
	

	
	



5. We	continue	with	the	Bayes	network	from	problem	4.		Suppose	we	generate	twenty	
samples	from	the	network	(each	sample	lists	the	T/F	values	for	A,	B,	C,	D):	
	

(False, True, False, False) 
(False, False, False, False) 
(False, False, True, True) 
(False, False, False, False) 
(False, False, True, False) 
(False, False, True, False) 
(False, True, False, False) 
(False, False, True, False) 
(True, False, True, True) 
(True, False, False, True) 
(True, True, False, True) 
(False, True, False, False) 
(False, False, True, True) 
(False, False, False, True) 
(False, False, True, True) 
(False, False, False, False) 
(False, False, False, True) 
(False, True, False, False) 
(True, False, False, False) 
(False, False, False, True) 
 

a. Using	direct	sampling,	use	the	twenty	samples	above	to	estimate	the	probability	
P(~a,	~b,	~c).		Show	your	work.	
	

b. Using	rejection	sampling,	use	the	twenty	samples	above	to	estimate	the	probability	
P(~a	|	~b,	~c).		Show	your	work,	including	stating	how	many	of	the	20	samples	are	
rejected.	
	

6. You	have	a	bag	containing	three	biased	coins,	called	coin	a,	coin	b,	and	coin	c,	with	
probabilities	of	coming	up	heads	of	20%,	60%,	and	80%	respectively.		You	reach	in	and	
pick	a	coin	randomly	from	the	bag,	but	you	can’t	tell	which	coin	you	picked	(they	all	look	
the	same	to	you).		You	flip	that	same	coin	three	times	and	observe	whether	you	got	heads	
or	tails	each	time.	
	

a. Define	a	complete	Bayesian	network	for	this	situation,	showing	the	structure	of	the	
network	and	the	CPTs.			
	
Hint:	you	will	need	four	random	variables,	one	for	which	coin	you	chose,	and	three	
for	the	flips.		The	three	coin	flips	are	Boolean	random	variables	(two-valued),	but	
the	coin-choice	random	variable	is	three-valued.	
	

b. Calculate	which	coin	was	most	likely	to	have	been	drawn	from	the	bag	if	the	
observed	flips	were	heads,	heads,	and	tails.		Show	all	of	your	work.		(Note	that	this	
last	problem	is	not	a	ML/MAP	problem,	it’s	a	direct	probability	calculation	using	
the	Bayes	net.)	


