
Functions	with	arguments	and	parameters	
	
Arguments	and	parameters	are	a	mechanism	by	which	a	function	may	receive	outside	information	that	
can	influence	how	the	function	works.		A	parameter	is	a	variable	that	is	placed	inside	the	function’s	
parentheses	when	it	is	defined.		That	variable	may	be	used	within	the	body	of	the	function	in	any	way	a	
normal	variable	would.		The	parameter	represents	a	piece	of	information	the	function	must	receive	from	
outside	its	definition	in	order	to	function.	
	
Syntax	for	defining	a	function	with	parameters:	
	
def name_of_function(param1, param2, ...):
 statement # This block of statements
 statement # is called the body of
 statement # the function definition.
 …
	
Syntax	for	calling	a	function	with	arguments:	
	
name_of_function(argument1, argument2, ...)
	
In	order	to	call	a	function	that	needs	arguments,	we	must	give	those	parameters	values.		This	is	done	by	
putting	arguments	inside	the	function	call.		Arguments	can	be	anything	Whenever	Python	sees	a	function	
call	to	a	function	that	takes	parameters,	before	jumping	to	the	start	of	the	new	function	body,	it	assigns	
any	parameters	in	the	function	definition	the	corresponding	values	from	where	the	function	is	called.	
	
def name_of_function(param1, param2, ...):
 statement
 statement
	
name_of_function(argument1, argument2, ...)
	
Equivalently,	imagine	that	a	function	that	takes	arguments	has	some	hidden	variable	assignment	
statements	at	the	beginning	of	the	body	that	are	changed	automatically	every	time	the	function	is	called:	
	
def name_of_function(param1, param2, …):
 param1 = argument1 # Python does this
 param2 = argument2 # behind the scenes.
 # if there were more arguments,
 # there would be more assignments statements here…
 statement
 statement
Example:	
def sing_song(name, age):
 print(“Happy birthday to you! Happy birthday to you!”)
 print(“Happy birthday dear”, name, “Happy birthday to you!”)
 print(“You are now”, age, “years old!”)

def main():
 sing_song(“Brian”, 84)
 sing_song(“Meg”, 27)

main()

Output:	
Happy birthday to you! Happy birthday to you!
Happy birthday dear Brian Happy birthday to you!
You are now 84 years old!
Happy birthday to you! Happy birthday to you!
Happy birthday dear Meg Happy birthday to you!
You are now 27 years old!

You	can	also	call	functions	with	arguments	by	using	variables	instead	of	literals:	
	
Example:	
def sing_song(name, age):
 print(“Happy birthday to you! Happy birthday to you!”)
 print(“Happy birthday dear”, name, “Happy birthday to you!”)
 print(“You are now”, age, “years old!”)

def main():
 username = input(“What is your name? ”)
 their_age = int(input(“What is your age? “))
 sing_song(username, their_age)

main()
Output:	
What is your name? Sheldon Cooper
What is your age? 31
Happy birthday to you! Happy birthday to you!
Happy birthday dear Sheldon Cooper Happy birthday to you!
You are now 31 years old!
	
Common	mistakes:	
• It	is	illegal	to	call	a	function	that	takes	arguments	with	more	or	fewer	than	the	appropriate	number	of	

arguments.	
o For	example,	in	the	version	of	sing_song	immediately	above,	if	we	called	the	function	using	

sing_song(“Alice”)	or	sing_song()	or	sing_song(“Alice”, 39, “Bob”, 42),	
our	program	would	crash	because	that	function,	based	on	the	definition	above,	always	takes	
exactly	two	arguments.	

• It	is	illegal	to	call	a	function	that	takes	arguments	of	the	wrong	data	type.	
o For	example,	there	is	a	math	function	in	Python	called	math.sqrt	that	takes	one	argument	

that	must	be	a	number.		If	you	call	it	using	math.sqrt(“apple”),	your	program	will	crash	
because	“apple”	is	a	string,	not	a	number.	 	

Notice	that	the	names	of	the	variables	do	not	have	to	match	between	the	arguments	in	the	function	call	
and	the	function	definition.		It’s	OK	to	use	the	same	variable	names	in	both	places,	but	realize	that	the	
transfer	of	information	is	one-way	only.		Information	is	passed	from	where	the	function	is	called	to	
where	it	is	defined,	but	any	changes	you	make	to	the	arguments	are	not	passed	back:	
	
def some_function(x):
 print(“Inside the function, x is”, x)
 x = 17
 print(“Inside the function, x is changed to”, x)

def main():
 x = 2
 print(“Before the function call, x is”, x)
 some_function(x)
 print(“After the function call, x is”, x)

main()
Output:	
Before the function call, x is 2
Inside the function, x is 2
Inside the function, x is 17
After the function call, x is 2
	
Why	does	this	happen?		This	happens	because	there	is	no	permanent	connection	between	the	x	in	main
and	the	x	in	some_function.		They	are	completely	separate	variables	because	they	were	defined	in	
separate	functions,	even	though	they	happen	to	share	a	name	(by	coincidence).		When	main	calls	
some_function(x),	main’s	value	for	x	is	passed	to	some_function’s	version	of	x,	but	that’s	where	
the	connection	ends.		When	some_function	assigns	17	to	x,	nothing	is	transferred	back	to	main.	
	
In	fact,	any	variables	you	assign	to	inside	a	function	will	never	affect	anything	outside	of	it	(until	we	learn	
about	returning	values,	but	that’s	for	later).		The	easiest	mistake	to	make	with	this	is	assigning	to	a	new	
variable	inside	a	function	then	trying	to	use	it	outside	of	that	function.	
	
def sing_song(name, age):
 print(“Happy birthday to you! Happy birthday to you!”)
 print(“Happy birthday dear”, name, “Happy birthday to you!”)
 print(“You are now”, age, “years old!”)
 age_next_year = age + 1

def main():
 sing_song(“Brian”, 84)
 print(“Next year you will be”, age_next_year, “years old!”)

main()

The	line	in	bold	will	crash	your	program	because	age_next_year	is	assigned	to	inside	of	sing_song,	
making	it	a	local	variable	to	sing_song.		It	is	invisible	to	all	other	functions	in	your	program	besides	
sing_song.	

