
if	statements	
	
A	regular	if	statement	allows	the	programmer	to	include	a	group	of	statements	that	Python	will	only	
execute	if	a	certain	condition	is	true.		If	the	condition	is	false,	the	extra	group	of	statements	is	ignored.	
	
if condition:
 statement
 statement
 [more statements if you want]

When	Python	gets	to	an	if	statement	in	your	code,	Python	will	examine	the	“condition,”	which	is	a	piece	
of	code	you	put	after	the	word	if.		If	the	condition	is	true,	all	of	the	statements	indented	after	the	if	line	
are	executed.		If	the	condition	is	false,	all	of	the	statements	indented	after	the	if	line	are	ignored,	as	if	
they	hadn’t	been	written	at	all.		In	this	situation,	your	program	will	find	the	next	line	of	code	after	the	if	
that	is	not	indented,	and	your	program	will	pick	up	from	that	point.	
	
What	does	a	condition	look	like?	
	
A	condition	is	any	Python	expression	that	can	be	interpreted	as	“true”	or	“false.”		Conditions	often	involve	
comparisons	between	two	things,	such	as:	
	
x > 2 (x + y) < z name == “Sam” revenue >= costs

Imagine	someone	approaching	you	and	asking	you	one	of	these	conditions	as	a	question.		If	you	would	
answer	“yes,”	then	the	condition	is	true,	otherwise,	it	is	false.		
	
Another	name	for	a	condition	is	a	Boolean	expression,	named	after	the	logician	George	Boole.	
	
Building	conditions	
	
You	can	use	the	following	relational	operators	to	build	tests:	
 > (greater	than) < (less	than) == (equal	to)
 >= (greater	than	or	equal	to) <= (less	than	or	equal	to) != (not	equal	to)	
	
Building	more	elaborate	conditions	
	
Sometimes	you	need	to	combine	two	tests	into	one,	making	a	single	large	test	comprised	of	two	smaller	
tests.		You	can	do	this	with	these	logical	operators:	
	
	 and	 (true	if	the	tests	on	both	sides	of	the	“and”	are	true,	false	otherwise)	
	 or	 (true	if	either	test	on	either	side	of	the	“or”	is	true,	false	otherwise)	
	 	
And	there’s	one	more	operator	that	only	works	on	a	single	test:	
	
	 not	 (true	if	the	test	on	the	right	side	is	false,	false	otherwise)	
	
Examples	of	more	elaborate	conditions	
	
(x > y) and (y > z) (letter == “A”) or (letter == “B”)

not ((pages_read > 100) and (hours_studied > 3))

if-else	statements	
	
Use	an	if-else	statement	if	you	want	Python	to	do	one	thing	if	a	condition	is	true,	but	do	a	different	thing	if	
the	condition	is	false.	
	
if condition:
 statement
 statement
 [more statements]
else:
 statement
 statement
 [more statements]
	
Use	a	regular	if	statement	when	you	want	your	program	take	an	action	only	when	a	condition	is	true.		
Use	an	if-else	statement	when	you	want	your	program	to	take	one	action	when	the	condition	is	true,	
but	a	different	action	when	the	condition	is	false.	
	
Notice	that	there	is	no	condition	that	goes	on	the	else line!	There’s	no	need	for	a	condition	there	because	
the	statements	that	go	with	the	else	clause	will	be	executed	if	the	original	condition	(on	the	if	line)	was	
false.	
	
if-elif-else	statements	
	
Use	an	if-elif-else	statement	if	you	have	a	situation	involving	three	or	more	possible	outcomes,	and	
your	program	needs	to	handle	each	outcome	differently.	
	
if condition1:
 statement
 statement
 [more statements]
elif condition2:
 statement
 statement
 [more statements]
elif condition3:
 statement
 statement
 [more statements]
Can add as many elif
 clauses as desired…
else:
 statement
 statement
 [more statements]
	
	

An	if-else	statement	contains	a	condition	and	a	group	of	
indented	statements	following	the	condition,	just	like	a	regular	if-
statement.		However,	after	the	first	group	of	statements,	there	is	
line	marked	“else:”	followed	by	a	second	group	of	statements.			
	
If	the	condition	is	true,	the	first	group	of	statements	is	executed,	
and	the	second	group	is	ignored.		If	the	condition	is	false,	the	first	
group	of	statements	is	ignored,	and	the	second	group	is	executed.	

This	kind	of	structure	is	an	extension	of	if-else	to	add	additional	
conditions.		This	is	often	used	when	you	need	to	make	a	multi-way	
decision,	such	as	a	numeric	score	that	can	fall	into	many	different	
ranges	of	numbers,	or	a	string	variable	that	could	be	in	one	of	many	
different	categories.	
	
In	if-elif-else	statements,	Python	evaluates	condition1	
first.		If	condition1	is	true,	then	the	group	of	statements	
immediately	underneath	is	executed,	and	all	the	other	groups	of	
statements	are	ignored.		If	condition1	is	false,	Python	skips	over	
the	first	group	of	statements	and	evaluates	condition2.		If	
condition2	is	true,	then	its	associated	group	of	statements	is	
executed,	and	all	the	other	groups	are	ignored.		This	continues	for	
all	the	remaining	conditions.		If	none	of	the	conditions	were	true,	
then	when	Python	gets	to	the	else	clause,	the	last	group	of	
statements	is	executed.	
	
The	end	result	is	that	only	one	of	the	groups	of	statements	will	ever	
be	executed	every	time	Python	sees	the	code.	

