
Functions

• Functions are groups of statements to which
you give a name.
– Defining a function uses the "def" keyword.

• That group of statements can then be referred
to by that name later in the program.
– Calling a function uses the name of the function

then an opening/closing set of parentheses.

def print_chorus():
print("Supercali…")
(etc)

def print_um_diddle():
print("Um diddle diddle…")
(etc)

def print_verse1():
print("Because I was afraid to speak…")
(etc)

A function for the "main" program.
def main():

print_chorus() # Print the chorus
print_um_diddle() # Print the um diddles
print_verse1() # Print the 1st verse
print_chorus() # Print the chorus again
print_um_diddle() # Print the um diddles again
print_verse2() # Print the 2nd verse
print_chorus() # Print the chorus the last time

main() # Start the program

Function definitions

Function calls

• When a function is called, Python
will

– "jump" to the first line of the
function's definition,

– run all the lines of code inside the
definition, then

– "jump" back to the point where the
function was called.

• When a function is called, Python will
– "jump" to the first line of the function's definition,
– run all the lines of code inside the definition, then
– "jump" back to the point where the function was called.

1 def twinkle():
2 print("Twinkle twinkle little star")
3 print("How I wonder what you are")

4 def main():
5 twinkle() # Call (run) the twinkle function.
6 print("Up above the world so high")
7 print("Like a diamond in the sky")
8 twinkle() # Call the twinkle function again.

9 main() # Call main() to start the program.

INPUT

PROCESSING

OUTPUT

Make
appetizer

Make
dinner

Make
salad

Make
entree

Make
dessert

• Suppose we want to write a program to sing
"Happy Birthday."

• If we think of "sing Happy Birthday" as an
algorithm, what information does the
algorithm require as input?

Arguments and Parameters

• Algorithms described by functions allow for
input via arguments and parameters.

• This method allows you to send information
into a function to change its behavior when it
runs.

Arguments and parameters
def name_of_function(param1, param2, …):

statement
statement
statement

Defining:

• Parameters are variables placed inside the
parentheses when a function is defined.

• They should represent pieces of information
that the function needs to know ahead of time
in order to run.

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

• The statements inside a function definition can use
the parameters as normal variables.

• Notice how the parameters aren't defined inside
the function. (There is no variable assignment
statement like name = something). The value
of the parameter must come from outside the
function.

Arguments and parameters
def name_of_function(param1, param2, …):

statement
statement
statement

name_of_function(arg1, arg2, …)

Defining:

Calling:

The values placed inside the parentheses when a function
is called are known as arguments.

They provide the extra information that the function needs
to do its job.

You've seen arguments already
• name = input("What is your name? ")
• x = 5
• y = 2
• print("x is", x, "y is", y)
• print("their sum is", x + y)

Arguments can be variables, literals, or math expressions.

(Anything you could put on the right side of a variable
assignment statement can be an argument.)

Determining good parameters

• Suppose you are writing a function to
compute the area of a rectangle. What
outside information does the function need to
be given to work?

• What if you're writing a function to determine
if someone was born in an even-numbered
month. What outside information would this
function need?

• Suppose I have an
identical twin. I
want my program to
ask for our names
and then sing Happy
Birthday to both of
us, individually.

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing_song(my_name)
twin_name = input("What is your twin's name? ")
sing_song(twin_name)

main()

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing_song(my_name)
twin_name = input("What is your twin's name? ")
sing_song(twin_name)

main()

When Python runs the red
line, it copies the value of
my_name into sing_song's
variable name.

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing_song(my_name)
twin_name = input("What is your twin's name? ")
sing_song(twin_name)

main()

When Python runs the blue
line, it copies the value of
twin_name into
sing_song's variable name.

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
name = input("What is your name? ")
sing_song(name)
name = input("What is your twin's name? ")
sing_song(name)

main()
• You may use the same variable names in both places, if

desired.
• Each function then has its own copy of the variable.
• There is no permanent link between the variables.

Local variables

• Any variable used as a parameter inside a
function is "owned" by that function, and is
invisible to all other functions.

• These are called local variables because they
can only be used "locally" (within their own
function).

• Any variable created inside a function is also a
local variable and cannot be seen outside of
that function.

def some_function(x):
print(“Inside the function, x is”, x)
x = 17
print(“Inside the function, x is changed to”, x)

def main():
x = 2
print(“Before the function call, x is”, x)
some_function(x)
print(“After the function call, x is”, x)

main()
Output:
Before the function call, x is 2
Inside the function, x is 2
Inside the function, x is 17
After the function call, x is 2

Wait. What?

• There is no permanent connection between the x
in main and the x in some_function.

• Arguments are passed --- one way only --- from
main to some_function when main calls
some_function.
– This copies main's value of x into some_function's
x.

• Any assignments to x inside of
some_function do not come back to main .

• You no longer have a twin. Now you have a sibling that is two
years older than you, but you still share the same birthday.

• Edit birthday.py so sing_song now will print the lyrics and
also print how old the person is.

• Add a second parameter to sing_song called age (representing
the age the person is turning), and add a third print statement
within the function to display a message with the new age.

• Edit main() to ask for your age, as well as your name and
sibling's name. Don't ask for your sibling's age using input(),
since you know they're always two years older than you.

• Edit the two calls to sing_song so appropriate ages are passed
as arguments.

• Challenge: write a function that takes three integer arguments
(month, day, year) and prints if the year is a leap year and the day
of the week (Monday, Tuesday, etc) that the date corresponds to.

