
Lists I

What is a list?

• Lists are strings on
steroids.

• A string stores an
ordered sequence of
single characters.

• A list stores an ordered sequence of any data
type.

0 1 2 3 4 5
String "banana" à

0 1 2 3 4 5
List of ints à

0 1 2
List of floats à

0 1 2
List of strings à

"b" "a" "n" "a" "n" "a"

34.5 -66.12 2347.0

"cat" "dog" "fish"

98 85 90 100 75 88

Why use lists?

• Lists exist so programmers can store multiple
related variables together.

• Useful when we don't know ahead of time
how many items we are going to store.
– Lists solve this problem because a single list can

hold from zero to practically any number of items
in it.

Basic list operations

• Lists are created using square brackets around
items separated by commas.
mylist = [1, 2, 3]
numbers = [-9.1, 4.77, 3.14]
fred = ["happy", "fun", "joy"]

• Lists are accessed using indices/positions just
like strings.

• Most (but not all) string functions also exist
for lists.

Strings Lists

string_var = "abc123" list_var = [item1, item2, ...]

string_var = "" list_var = []

len("abc123")

len(string_var)

len([3, 5, 7, 9])

len(list_var)

string_var[p]

string_var[p:q]

list_var[p]

list_var[p:q]

str3 = str1 + str2

str3 = "abc" + "def"

list3 = list1 + list2

list3 = [1, 2, 3] + [4, 5, 6]

"i" in "team" -> False 7 in [2, 4, 6, 8] -> False

One important difference

• Strings are immutable
– You can't change a string without making a copy

of it.
s = "abc"
s[0] = "A" # illegal!
s = "A" + s[1:] # legal

One important difference

• Lists are mutable
– Can be changed "in-place" (without explicit copying)
L = [2, 4, 6, 8, 10]
L[0] = 15 # legal
L.append(26) # legal

Compare mutable and immutable

• How can we switch the first and last letter in a
string?
– (Change a string to swap the first & last letters)

• How can we switch the first and last items in a
list?
– (Change a list to swap the first & last items)

Three common ways to create a list
• Create an empty list:

lst = []
Common when you're going to add things in the list later
(maybe from the keyboard or a file).

• Create a list and initialize it with some data:
lst = [4, 7, 3, 8]

• Create a list of a certain length that has the same element in all
positions:
lst = [0] * 4 # creates the list [0, 0, 0, 0]
Common when you need a list of a certain length ahead of time.

Simple list problems

What does this code do?
lst = [1,3,5]
lst.append(1)
lst.insert(2, 6)
lst2 = [4] * 2
lst3 = lst[0:3] + lst2

Simple list problems

What does this code do?

lst = [5,6,3,4,1,2]
for pos in range(0, len(lst3), 2):

lst[pos] = -1

Simple list problems

• How would we write a function to convert a
number from 1-12 into the corresponding
month of the year as a string?

def getmonth(month):

while True:
num = int(input("Enter number: "))
if num == -1:

break
print("Your number is", num)

lst = []
while True:

num = int(input("Enter number: "))
if num == -1:

break
lst.append(num)

(1) Write a program to allow the user to input integers
from the keyboard until they type -1. As each integer
is entered, store them in a list.

(2) After the input loop, write a loop to calculate and
print the sum of all the numbers in the list.

(3) After the input loop, write code to find & print the
largest and smallest values in the list.

(4) Create a file with at least 10 integers in it, one per line.
Change the input loop in your code to read the
integers from the file instead, rather than from the
keyboard.

(5) After the input loop, write code to print out the sum
of every adjacent pair of numbers in the list (don't use
sliding window; use indices)

(6) Change the input loop so the numbers are not read
from a file, but are generated at random (say, between
1 and 100).

