
Strings II

Review

• Strings are stored character by character.
• Can access each character individually by

using an index:
0 1 2 3 4 5 6 7

"C" "o" "m" "p" "u" "t" "e" "r"

New
• Negative indexing can be used. (Particularly

useful for getting characters near the end of a
string.)

0 1 2 3 4 5 6 7
-8 -7 -6 -5 -4 -3 -2 -1
"C" "o" "m" "p" "u" "t" "e" "r"

The basic string for loop

• Use this whenever you need to process a
string one character at a time.

assume s is a string variable
for pos in range(0, len(s)):
do something with s[pos]

s = "banana"
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

s = "banana"
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

1st iteration
pos: 0
s[pos]: "b"
total: 0

pos

s[pos]

s = "banana"
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

2nd iteration
pos: 1
s[pos]: "a"
total: 1

pos

s[pos]

s = "banana"
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

3rd iteration
pos: 2
s[pos]: "n"
total: 1

pos

s[pos]

s = "banana"
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

4th iteration
pos: 3
s[pos]: "a"
total: 2

pos

s[pos]

s = "banana"
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

5th iteration
pos: 4
s[pos]: "n"
total: 2

pos

s[pos]

s = "banana"
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

6th iteration
pos: 5
s[pos]: "a"
total: 3

pos

s[pos]

Algorithm -> Function

• Counting the number of a certain character in
a string seems like a good candidate for a
function.

def count_a(s):
total = 0
for pos in range(0, len(s)):

if s[pos] == "a"
total = total + 1

return total

def count_a(s):
total = 0
for pos in range(0, len(s)):

if s[pos] == "a":
total = total + 1

return total

def main():
name = input("What is your name? ")
freq = count_a(name)
print("Your name has", freq, "A's in it.")

• Step 1: Change the count function so it takes a
second argument called letter. The function
should count the number of times that letter
occurs in the string (instead of only lowercase a's).

• Step 2: Change the main function so that the user
can type in their name and a letter and the
program prints the frequency of that letter in their
name.

• Step 3: Write a function count_dups that counts
(and returns) all occurrences of consecutive
duplicated letters in a string.
– e.g., count_dups("balloon") returns 2.

Not all string problems are solved with for loops.

def get_initial(firstname):
first_init = firstame[0]
return first_init

String Concatenation

• Combines two strings into a new, longer string.
• Uses the same plus sign as addition.
s1 = "CS141"
s2 = "rocks!"
bigstring = s1 + s2
print(bigstring)
prints CS141rocks!

String Concatenation

• Unlike print(), string concatenation does not
put spaces between your strings.

s1 = "CS141"
s2 = "rocks!"
bigstring = s1 + " " + s2
print(bigstring)
prints CS141 rocks!

Sample problem

• All professor email addresses at Rhodes are
constructed from the professor's last name,
followed by the initial letter of their first
name.

• We want to design a function that takes a
prof's first and last name and returns their
email address.

def make_prof_email(first, last):
init = first[0]
address = last + init + "@rhodes.edu"
return address

def main():
firstname = input("First name: ")
lastname = input("Last name: ")
addr = make_prof_email(firstname, lastname)
print("Email:", addr)

You try it

• Write a function make_student_email that
creates (and returns) a student email address.

• The function should take four parameters: first
name, last name, middle name, and class year.

• Challenge: Modify the function so it takes only two
parameters: someone's full name (one string with
first, middle, and last names within it) and class
year.

• A fundamental problem when using strings is
computing a substring, or a string slice.

• We want to tell Python
– take some string,
– give me all the characters starting from one index,
– and ending at another index.

• Fortunately, this is built into Python!

• Two ways to use square brackets.
• 1 number inside the brackets:
– returns exactly one character of a string.
– if s = "Computer, then s[0] returns "C"

• 2 numbers inside the brackets:
– returns a substring or string slice.

s[a:b] gives you a string slice of string s starting
from index a and ending at index b-1.

0 1 2 3 4 5 6 7

s[0:1] -> "C" just like s[0]
s[0:2] -> "Co"
s[0:7] -> "Compute"
s[3:6] -> "put"
s[0:8] -> "Computer"

"C" "o" "m" "p" "u" "t" "e" "r"

More fun with indices

• Indices can also be negative.
• A negative index counts from the right side of

the string, rather than the left.
s = "Computer"
print(s[-1]) # prints r
print(s[-3:len(s)]) # prints ter
print(s[1:-1]) # prints ompute

• Slices don't need both left and right indices.
• Missing left index:
– Python assumes you meant 0 [far left of string]

• Missing right index:
– Python assumes you meant len(s) [far right of string]

s = "Computer"
print(s[1:]) # prints omputer
print(s[:5]) # prints Compu
print(s[-2:]) # prints er

Indices don't have to be literal numbers

Say we have this code:
name = input("type in your name: ")
x = int(len(name) / 2)
print(name[0:x])
What does this print?

