
File	Reading	Lab	with	the	Billboard	Hot	100	
	
The	Billboard	Hot	100	is	a	record	chart	indicating	the	popularity	of	songs	in	the	United	States.		The	list	was	first	
published	in	the	1950s,	with	the	birth	of	rock	and	roll,	and	has	been	updated	every	week	since	then.		Song	
popularity	is	currently	determined	by	song	sales,	radio	play,	and	online	streaming.		The	list	is	presented	in	ranked	
order,	so	the	most	popular	song	for	the	week	is	first	on	the	list,	the	second-most	popular	song	is	next,	and	so	on.	
	
You	are	given	a	file	songs.txt	that	contains	information	about	the	top	20	songs	on	the	Billboard	Hot	100	chart.		
The	songs	in	the	file	are	presented	in	the	same	order	as	the	Billboard	list,	meaning	the	first	line	of	the	file	contains	
the	#1	song	for	the	week	(the	most	popular),	the	second	line	has	the	#2	song	(second	most	popular),	and	so	on.	
	
Each	line	of	the	file	contains	information	about	one	song:		

• The	song’s	title	
• The	song’s	artist	
• The	song’s	ranking	on	the	chart	during	the	previous	week	(-1	if	this	song	was	not	on	the	chart	during	the	

previous	week)	
• The	number	of	weeks	the	song	has	been	on	the	chart	(in	any	position	on	the	chart)	(e.g.,	1	if	this	song	was	

not	on	the	chart	during	the	previous	week)	
A	semicolon	(;)	is	used	to	separate	these	four	parts	on	a	single	line	of	the	file.	
	
Write	the	following	programs:	
1. Write	a	program	to	open	the	file	and	print	all	the	information	in	the	file.		Make	sure	to	correctly	open	the	

file,	use	a	for	loop	to	read	each	line,	rstrip()	the	line,	and	split	the	line	into	the	four	pieces.		Don’t	forget	
to	convert	the	ranking	on	the	chart	and	the	number	of	weeks	on	the	chart	into	integers!	
	

2. Write	a	program	to	print	the	names	and	artists	of	all	the	songs	that	have	been	on	the	chart	for	at	least	20	
weeks.	
	

3. Write	a	program	to	print	the	name	and	artist	of	the	song	that	has	been	on	the	chart	the	longest	(greatest	
number	of	weeks),	and	the	name	and	artist	of	the	song	that	has	been	on	the	chart	the	fewest	number	of	
weeks.		(If	there	are	songs	that	are	tied	for	greatest	or	fewest	number	of	weeks,	you	may	choose	any	one	
you	like	to	print.)	
	
Hint:	first	write	the	program	to	just	find	the	largest	and	smallest	number	of	weeks	on	the	chart,	then	
change	your	code	so	it	also	saves	the	artist	and	title,	as	well	as	the	number	of	weeks.	
	

4. Write	a	program	to	print	the	name	of	each	song	on	the	chart,	along	with	a	message	saying	whether		
• the	song	moved	up	the	chart	from	the	previous	week	(that	is,	its	ranking	on	the	chart	this	week	is	less	

than	its	ranking	the	previous	week),	and	how	much	the	ranking	changed,	
• the	song	moved	down	the	chart	from	the	previous	week,	and	how	much	the	ranking	changed,	
• the	song	stayed	the	same	when	compared	to	the	previous	week,	or	
• the	song	is	a	new	song	on	the	chart	(it	wasn’t	even	on	the	chart	the	previous	week).	

	
	 Obviously	only	one	of	the	four	situations	will	apply	to	each	song	on	the	chart.	

	
Hint:	The	file	directly	gives	you	each’s	song’s	ranking	on	the	chart	for	the	prior	week,	but	not	the	current	
week.		However,	you	can	compute	the	ranking	in	the	current	week	very	easily,	given	what	you	know	about	
how	the	file	is	organized.		

	
5.			 Write	a	program	to	find	all	pairs	of	consecutively-ranked	songs	on	the	chart	where	their	relative	

popularities	are	reversed	from	the	prior	week.		In	other	words,	find	all	back-to-back	songs	in	the	file	where	
---	in	the	prior	week	---	the	currently	less-popular	song	was	ranked	higher	than	the	currently	more-popular	
song.		Note	that	the	songs	need	not	be	consecutively-ranked	in	the	prior	week,	just	the	current	week.		Hint:	
Use	the	sliding	window	technique.	


