Alan Turing was an English
mathematician and computer
scientist. He is well-known for
formalizing the concept of what
an algorithm is, and what
computers are capable of doing
(and what they're not capable
of doing)! He's also known for
the Turing test, an attempt to
define what it means for a
machine to be intelligent.

.
@

222
)
>
> 2y
R
552
)

D>

18§ PROCESSING

- it xR._.

i

def average(a, b, c¢):
avg = (a + b + ¢)/3

print (“The average of your \
numbers 1s”, avg)

ive me a number: "))
ive me a number: "))
Give me a number: “))
z)

When main calls average, Python copies the

values of x, y, and z (local variables in main)
into a, b, and c (local variables in average).

* Pretend we’re calculating grades for a class that
has three homework assignments and three
tests. Your final grade in the class is weighted so
that

— 75% of the final grade is from the average of the
three tests, and

— 25% is from the average of the three homework
assignments.

 We'd like to write a program to use our average
function to take the averages of the test and
homework grades, and then weight those
averages appropriately to compute a final course
grade.

def average(a, b, c):
avg = (a + b + ¢c)/3
print (“The average of your numbers 1is”, avg)

def main():
testl = input(“Give me the first test grade: *)
test2 = input(“Give me the second test grade: *)
test3 = input(“Give me the third test grade: *)
average(testl, test2, test3)

hwl = input(“Give me the first HW grade: *)

hw2 = input(“Give me the second HW grade: *“)
hw3 = input(“Give me the third HW grade: *)

average(hwl, hw2, hw3)

some code here to weight the test average by 0.75
and the quiz average by 0.25 and combine them.

main()

def average(a, b, c): main can't see the "avg"
avg = (a + b + c)/3 variable inside of average

print (“The average of yo

def main():

testl = input(“Give me tHUELIEFTOI =PRI TEIAVETANEReel |
test2 = input(“Give me tHENEEIEEREN A eEETTE o) SN

test3 = input(“Give me tHEFTERrEG e e Rz o) (o ho =l o (o)
average(testl, test2, tes

hwl = input(“Give
hw2 = input(“Give
hw3 = input(“Give
average(hwl, hw2,

because avg is a local variable.

Even if we could access avg
me the RICIUBUEITTRUECERRAEVAYE
-3 A8 could have both the homework

LR and test avg values at the same
hw3)

some code here to weight the test average by 0.75
and the quiz average by 0.25 and combine them.

main()

def average(a, b, c):
avg = (a + b + ¢)/3

What we want to do is:

final_grade =0.75 * (avg from the first call to average) + 0.25 * (avg
from the 2" call)

average(testl, test2, test3)

hwl = input(“Give me the first HW grade: *)

hw2 = input(“Give me the second HW grade: *“)
hw3 = input(“Give me the third HW grade: *)

average(hwl, hw2, hw3)

some code here to weight the test average by 0.75
and the quiz average by 0.25 and combine them.

main()

Return values to the rescue!

def function(paraml, param2, ..):
statement

statement

[more statements if desired |
return value

value can be a literal, like a
number or a string, or it can

be a local variable from the
function.

Return values to the rescue!

. When Python sees a linein a
def function(parami, function beginning with

statement "return," the function
immediately ends, and the
statement

value is sent back to the caller.
[more statements if desired |

return value , _
value can be a literal, like a

number or a string, or it can

be a local variable from the
function.

Capturing the return value

* Use an assignment statement to "capture” the
return value, otherwise it disappears!

* Syntax:
variable = function(argl, arg2, ...)

When Python sees a line like
this, the function is called
normally. However, when
the function ends with
return and a value is "sent
back" to the caller, the value
is copied into the variable
you specify.

This variable "captures" the
return value from the function.
The variable will be set to

whatever is after the word
"return" in the function
definition.

def average(a, b, c¢):
avg = (a + b + ¢)/3

return avg

Notice average now returns the

local variable avg, and the print
statement is removed.

def main():
testl = input(“Give me the first test grade: *)
test2 = input(“Give me the second test grade: *)
test3 = input(“Give me the third test grade: *)
test avg = average(testl, test2, test3)
print(“Your test average is”, test avg)
hwl = input(“Give me the first HW grade: “)
hw2 = input(“Give me the second HW grade: *)
hw3 = input(“Give me the third HW grade: *)
hw avg = average(hwl, hw2, hw3)
print (“Your homework average 1is”, hw avg)
final grade = 0.75 * test avg + 0.25 * hw avg
print(“Your final grade 1is”, final grade)

main()

def average(a, b, c¢): .
ge(a, b, c) main calls average: values test],

test2, and test3 are copied into a,
b, and c.

avg = (a +

return avg

def main():

testl = input(“Glve me&\the Wirst test grade: ")
test2 = input(“Gi

test3 = input(“Give ' st grade:)

d test grade:)

test avg = average(testl, test2, test3)
print(“Your test average is”, test avg)

hwl = input(“Give me the first HW grade: *)
hw2 = input(“Give me the second HW grade: *)
hw3 = input(“Give me the third HW grade: *)
hw avg = average(hwl, hw2, hw3)

print (“Your homework average 1is”, hw avg)
final grade = 0.75 * test avg + 0.25 * hw avg
print(“Your final grade 1is”, final grade)

main()

def average(a, b, c):
avg = (a + b + ¢)/3

return avg

average returns a copy of its local

variable avg back to main, and the
value is assigned to test avg.

def main(
testl
test?2

tes

input(“Give me the first test grade: *)
input(“Give me the second test grade: *“)
input(“Give me the third test grade: *)
test avg = average(testl, test2, test3)
print(“Your test average is”, test avg)

hwl = input(“Give me the first HW grade: “)

hw2 = input(“Give me the second HW grade: *)
hw3 = input(“Give me the third HW grade: *)

hw avg = average(hwl, hw2, hw3)

print (“Your homework average 1is”, hw avg)

final grade = 0.75 * test avg + 0.25 * hw avg
print(“Your final grade 1is”, final grade)

main()

def average(a, b, c): :
ge(a, b, c) main calls average: values hw1,

hw2, and hw3 are copied into a, b,
and c.

avg = (a +

return avg

def main():

testl = inputy(“GAve me the first test grade: “)
test2 = input{”“Gige mé4 the second test grade: *)
test3 = input(YGivé me\the third test grade: *)
test2, test3)

1s”, test avgqg)

test avg =
print (“Your tes
hwl = input(“Givg me Llrst HW grade: *)
hw2 = input(“Givée| me ond HW grade: *)
hw3 = input(“Give \me tRe thi\rd HW grade: *)
hw avg = average(hwl, hw2, hw3)

print (“Your homework average 1is”, hw avg)
final grade = 0.75 * test avg + 0.25 * hw avg
print(“Your final grade 1is”, final grade)

main()

def average(a, b, c):
avg = (a + b + ¢)/3

return avg

average returns a copy of its local

variable avg back to main, and the
value is assigned to hw_avg.

def main ()
input(“Give me the first test grade: *)
input(“Give me the second test grade: *“)
input(“Give me the third test grade: *)
= average(testl, test2, test3)

“Your test average is”, test avg)
input(“Give me the first HW grade: *)
input(“Give me the second HW grade: ")
input(“Give me the third HW grade: *)

hw avg = average(hwl, hw2, hw3)

print (“Your homework average 1is”, hw avg)

final grade = 0.75 * test avg + 0.25 * hw avg
print(“Your final grade 1is”, final grade)

main()

def square(x):
return x * Xx

def larger(a, b):
if a > b:
return a
else:
return b

Compare:

def square(x):
return x * X

def square():
x = int(input("What is x?"))
print(x * x)

Take-away:

* |f a function needs information from outside
the function to do its job, it's usually better to
receive that input via a parameter, rather than
use an input statement inside the function.

* OK to use an input statement outside the
function and then send the variable via an
argument into the function.

Take-away:

* |f a function wants to communicate its answer
to the outside world, it's usually better to
send that answer back via a return value
rather than use a print statement inside the
function.

* OK to capture the return value outside the
function and then use a print statement
outside the function.

* When writing functions, you should test them
to make sure they work in all kinds of
situations.

— Does average() work with negative numbers?
Floating point numbers?
* You can write a program to do testing, by
calling the function with varying arguments.

* Or, you can test your function using the

Python Shell (the window where every line
starts with >>>)

* Write a function called salary that takes two
arguments: your hourly wage and your tax bracket
percent (e.g., 0.15). This function should return your
total income for the year, after taxes are deducted.
Assume you are paid for 40 hours/week, 52
weeks/year.

— The definition line will be def salary(wage, bracket):

— Dho ﬂOt write a main() function. Test this from the Python
sneil.

* Write a function called direction that takes two
float arguments, x and y. Consider an arrow on the
Cartesian plane pointing from (0, 0) to (x, y). This
function should return the string "NE", "SE", "SW", or
"NW" depending on the direction that the arrow
points. Assume x and y will never be zero.

— The def line will be: def direction(x, Vv):

