
Loop	Practice	(Nested	and	non-nested)	
	

1. Finish	writing	the	four	triangle	functions	if	you	didn't	finish	writing	them	yesterday:	
	
Write	a	function	called	lower_left that	takes	one	parameter	called	size.		This	function	prints	a	right	
triangle	using	numbers	where	the	base	and	height	are	both	of	the	size	specified.		The	90-degree	vertex	of	
the	triangle	is	at	the	lower	left.	
	
Example:	lower_left(5) prints:	
	
1
12
123
1234
12345

2. Write	functions	upper_left,	lower_right,	and	upper_right that	each	also	take	a	parameter	called	
size	and	print	the	other	three	types	of	right	triangle,	respectively.	
	
upper_left(5) lower_right(5) upper_right(5)	
12345 1 12345
1234 ...12 .1234	
123 ..123 ..123
12 .1234 ...12
1 12345 1	
	

3. Write	a	function	called	count_factors	that	takes	a	single	parameter	called	num.		This	function	returns	the	
number	of	positive	factors	of	num;	this	is	the	number	of	positive	integers	between	1	and	num,	inclusive,	that	
divide	into	num	evenly.		For	instance,	the	number	10	has	4	factors:	1,	2,	5,	and	10.		So	calling	
count_factors(10)	should	return	4.	
	
Do	this	by	writing	a	loop	that	counts	from	1	to	num	and	tests	the	remainder	of	dividing	num	by	whatever	the	
counter	variable	is.	
	

4. Write	a	function	called	is_prime	that	takes	a	single	parameter	called	num.		This	function	returns	True	if	
num	is	prime;	that	is,	if	num	has	only	two	factors:	itself	and	1.		Do	this	similarly	to	count_factors,	but	take	
advantage	of	the	fact	that	once	you	find	a	single	number	that	divides	evenly	into	num	(that	is	not	1	or	num	
itself),	then	you	can	stop	searching	for	more	factors,	because	num	can	no	longer	be	prime.		Hint:	use	break	
to	stop	the	loop.	
	

5. Write	a	program	that	prints	all	the	prime	numbers	that	are	less	than	100.		Hint:	the	smallest	prime	number	
is	2	(1	is	not	a	prime	number.)	
	

6. Write	a	program	that	prints	the	first	fifty	prime	numbers.		Do	not	do	this	by	first	figuring	out	what	the	50th	
prime	number	ahead	of	time	is	and	printing	all	prime	numbers	less	than	or	equal	to	that	number.		Do	this	
by	generating	prime	numbers	as	you	go	and	stopping	when	you	have	generated	fifty	of	them.	
	
	
	
	
	
	
	
	
	
(turn	over)	

7. Write	a	function	called	roman	that	takes	one	integer	parameter.		This	function	should	print	out	the	pseudo-
Roman	numeral	equivalent	of	the	number.		(Using	return	is	hard	here,	so	print	is	ok.)		I	say	“pseudo”	
because	we	will	simplify	Roman	numerals	a	bit	by	getting	rid	of	the	weird	subtraction	rules	for	Roman	
numerals.		For	example,	normally	9	is	written	as	IX	=	10	–	1,	but	your	program	can	print	VIIII.		(Guide:	In	
Roman	numerals,	M	=	1000,	D	=	500,	C	=	100,	L	=	50,	X	=	10,	V	=	5,	and	I	=	1.)		
	
Use	a	loop	that	runs	until	the	user’s	number	becomes	equal	to	zero.		Inside	the	loop,	write	if	statements	that	
test	how	big	the	number	is.		If	the	number	is	bigger	than	or	equal	to	one	of	the	exact	Roman	numerals	
above,	print	that	numeral,	subtract	the	value	from	the	user’s	number,	and	loop	again.	
	
Challenge:	make	this	work	with	“real”	Roman	numerals;	e.g.,	for	9	it	should	print	IX,	not	VIIII.		Try	this	on	
your	own,	but	I	have	a	hint	if	you	really	want	it.	
	

8. Write	a	program	that	starts	off	asking	the	user	how	much	money	they	have	in	their	bank	account.		Then	
enter	a	loop	that	continuously	asks	the	user	to	enter	an	amount	of	money	they	want	to	withdraw	from	an	
ATM.		Keep	looping	until	the	account	is	empty.	
	
Next,	add	a	menu	to	let	the	user	add	money,	subtract	money,	or	quit	the	ATM	program.		Let	the	user	keep	
using	the	ATM	as	long	as	they	want	(until	they	choose	to	quit).		Prevent	the	user	from	withdrawing	more	
money	than	they	have	in	their	account.		Use	input	validation	to	prevent	the	user	from	typing	in	negative	
amounts	of	money.	
	

9. Write	a	guess-the-number	program.		Use	random.randint()	to	have	the	computer	pick	a	random	number	
between	1	and	100.		Write	a	loop	that	lets	the	user	guess	numbers	until	they	guess	right	---	the	computer	
reports	back	for	each	guess	whether	it	was	“too	low”	or	“too	high.”	
	

10. Write	a	graphical	game	program,	“Find	the	Hole”.	The	program	should	use	a	random	number	generator	to	
choose	a	circular	“hole”,	selecting	a	point	on	the	graphics	canvas	and	a	perhaps	the	radius	around	that	
point.	These	are	invisible,	however,	and	are	not	shown	to	the	player	initially.	The	user	is	then	prompted	to	
click	around	on	the	canvas	window	to	“find	the	hidden	hole”.	You	should	display	the	points	the	user	has	
tried.	Once	the	user	selects	a	point	that	is	within	the	chosen	radius	of	the	mystery	point,	the	mystery	circle	
should	appear.	There	should	be	a	message	announcing	how	many	steps	it	took,	and	the	game	should	end.	
	

11. Write	a	program	that	simulates	a	graphing	calculator	for	a	specific	type	of	function	(e.g.,	parabolas).		For	
instance,	let	the	user	type	in	values	for	a,	b,	and	c,	and	graph	the	equation	y	=	ax2	+	bx	+	c.	

