
Functions

• Functions are groups of statements to which
you give a name.
– Defining a function uses the "def" keyword.

• That group of statements can then be referred
to by that name later in the program.
– Calling a function uses the name of the function

then an opening/closing set of parentheses.

def print_chorus():
print("Supercali…")
(etc)

def print_um_diddle():
print("Um diddle diddle…")
(etc)

def print_verse1():
print("Because I was afraid to speak…")
(etc)

A function for the "main" program.
def main():

print_chorus() # Print the chorus
print_um_diddle() # Print the um diddles
print_verse1() # Print the 1st verse
print_chorus() # Print the chorus again
print_um_diddle() # Print the um diddles again
print_verse2() # Print the 2nd verse
print_chorus() # Print the chorus the last time

main() # Start the program

Function definitions

Function calls

• When a function is called, Python
will

– "jump" to the first line of the
function's definition,

– run all the lines of code inside the
definition, then

– "jump" back to the point where the
function was called.

• When a function is called, Python will
– "jump" to the first line of the function's definition,
– run all the lines of code inside the definition, then
– "jump" back to the point where the function was called.

1 def twinkle():
2 print("Twinkle twinkle little star")
3 print("How I wonder what you are")

4 def main():
5 twinkle() # Call (run) the twinkle function.
6 print("Up above the world so high")
7 print("Like a diamond in the sky")
8 twinkle() # Call the twinkle function again.

9 main() # Call main() to start the program.

INPUT

PROCESSING

OUTPUT

Make
appetizer

Make
dinner

Make
salad

Make
entree

Make
dessert

• So far we know:

• Input:
– input statement

• Output:
– print statement

• Processing:
– math, variable assignments, if statements

• Suppose we want to write a program to sing
"Happy Birthday" to the user, who also has a
twin sibling.

• If we think of "sing Happy Birthday" as an
algorithm, what information does the
algorithm require as input?

Arguments and Parameters

• Algorithms described by functions allow for
input via arguments and parameters.

• This method allows you to send information
into a function to change its behavior when it
runs.

Arguments and parameters
def name_of_function(param1, param2, …):

statement
statement
statement

Defining:

• Parameters are variables placed inside the
parentheses when a function is defined.

• They should represent pieces of information
that the function needs to know ahead of time
in order to run.

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

• The statements inside a function definition can use
the parameters as normal variables.

Arguments and parameters
def name_of_function(param1, param2, …):

statement
statement
statement

name_of_function(arg1, arg2, …)

Defining:

Calling:

The values being copied from the calling function are
called arguments.
The variables being copied into are called parameters.

You've seen arguments already
• name = input("What is your name? ")
• x = 5
• y = 2
• print("x is", x, "y is", y)
• print("their sum is", x + y)

Arguments can be variables, literals, or math expressions.

Determining good parameters

• In an algorithm for computing the area of a
rectangle, what information is needed?

• In calculating whether a number is even, what
information is needed?

• What if we want our program to ask for the
user's and twin's names?

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing_song(my_name)
twin_name = input("What is your twin's name? ")
sing_song(twin_name)

main()

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing_song(my_name)
twin_name = input("What is your twin's name? ")
sing_song(twin_name)

main()

When Python runs the red
line, it copies the value of
my_name into sing_song's
variable name.

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing_song(my_name)
twin_name = input("What is your twin's name? ")
sing_song(twin_name)

main()

When Python runs the blue
line, it copies the value of
twin_name into
sing_song's variable name.

def sing_song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
name = input("What is your name? ")
sing_song(name)
name = input("What is your twin's name? ")
sing_song(name)

main()
• You may use the same variable names in both places, if

desired.
• Each function then has its own copy of the variable.
• There is no permanent link between the variables.

Local variables

• Any variable used as a parameter inside a
function is "owned" by that function, and is
invisible to all other functions.

• These are called local variables because they
can only be used "locally" (within their own
function).

• Any variable created inside a function is also a
local variable and cannot be seen outside of
that function.

def some_function(x):
print(“Inside the function, x is”, x)
x = 17
print(“Inside the function, x is changed to”, x)

def main():
x = 2
print(“Before the function call, x is”, x)
some_function(x)
print(“After the function call, x is”, x)

main()
Output:
Before the function call, x is 2
Inside the function, x is 2
Inside the function, x is 17
After the function call, x is 2

Wait. What?

• There is no permanent connection between the x
in main and the x in some_function.

• Arguments are passed --- one way only --- from
main to some_function when main calls
some_function.
– This copies main's value of x into some_function's
x.

• Any assignments to x inside of
some_function do not come back to main .

• You no longer have a twin. Now you have a sibling
that is two years older than you, but you still share
the same birthday.

• Edit birthday.py so sing_song now will print the
lyrics but also print how old the person is.

• Add a second parameter to sing_song called age.
• Edit main() to ask for your age, as well as your name

and sibling's name.
• Edit the two calls to sing_song so appropriate ages

are passed as arguments.

