
Lab:	Pair	Programming	with	Graphics,	Functions,	and	Local	Variables	
	
Pair	programming	is	a	technique	where	two	programmers	work	at	a	single	computer	to	write	code.		Person	A	is	called	
the	driver,	and	is	the	person	responsible	for	typing	the	code.		Person	B	is	called	the	navigator,	and	is	responsible	for	
reviewing	each	line	of	code	as	it	is	typed	in,	looking	for	syntax	errors,	other	bugs,	or	ways	to	improve	the	code	to	make	it	
clearer,	simpler,	or	more	efficient.		Before	anything	happens,	both	people	should	agree	on	the	general	structure	of	the	
algorithm	they’re	going	to	use.		The	two	people	work	together	as	equals,	and	switch	roles	frequently.		The	goal	of	this	is	
to	have	one	person	(the	driver)	who	focuses	all	their	attention	on	the	role	of	writing	the	code,	while	the	other	person	
(the	navigator)	focuses	on	making	sure	what	the	driver	is	writing	is	the	best	possible	code	they	could	write.			
	

• Create	a	program	to	draw	a	bullseye	(looks	like	the	Target	logo)	on	the	screen.	
o First	create	a	main()	function	that	opens	a	canvas,	draws	one	circle,	and	closes	the	canvas	on	a	click.	

(Do	this	just	to	make	sure	your	graphics	are	working	correctly.)	
o Modify	main()	so	it	draws	at	least	four	concentric	circles	using	the	draw_filled_circle	function.	
o Alternate	between	two	colors	to	get	a	bullseye	effect.	

	
• Modify	your	program	to	add	a	function	called	“draw_bullseye”	that	takes	two	parameters:	the	x-	and	y-

coordinates	of	the	center	of	the	bullseye.		Add	code	to	the	body	of	draw_bullseye	so	that	when	called,	it	draws	
a	bullseye	at	the	(x,	y)	location	specified	by	the	parameters.		Then,	edit	your	main()	function	to	call	
draw_bullseye	twice	at	different	locations	on	the	screen	(pick	two	different	(x,	y)	locations).	
	
Hints:	Your	function	definition	line	will	look	like	this	à									def draw_bullseye(x, y): 
 
When	you’re	done,	there	should	not	be	any	circle-drawing	function	calls	inside	main	anymore,	they	should	only	
be	inside	of	draw_bullseye.		All	main	should	do	is	open	a	canvas,	call	draw_bullseye	twice,	and	close	the	
canvas	on	a	click.		
	

• Modify	your	program	to	add	a	third	and	fourth	argument	to	your	bullseye	function	called	color1	and	color2.		
These	arguments	will	let	the	caller	of	the	bullseye	function	choose	two	alternating	colors	for	the	bullseye.	
	
For	instance,	if	the	user	wanted	a	bullseye	centered	at	(100,	100)	colored	red	and	black,	they	should	be	able	to	
call	the	function	like	this:		draw_bullseye(100, 100, “red”, “black”)	
	

• Modify	your	main	function	so	the	user	can	type	in	the	(x,	y)	coordinates	of	the	center	of	a	bullseye	they	want	to	
draw,	and	the	colors	they	want	to	paint	it.	

o This	will	require	four	separate	input	statements:	one	for	x,	one	for	y,	and	two	for	the	colors.	
o The	input	statements	should	not	go	inside	the	bullseye	function;	they	should	be	inside	the	main	

function,	and	the	information	typed	in	should	be	passed	as	arguments	to	the	bullseye	function.	
	

• Modify	your	bullseye	function	definition	to	take	a	fifth	argument,	the	radius	of	the	bullseye.		You’ll	need	to	do	
some	math	to	figure	out	what	the	radii	of	the	nested	circles	should	be.		
	

• Challenge:	Write	a	function	called	draw_square(x, y, side)	that	takes	as	arguments	the	(x,	y)	
coordinates	of	the	center	of	a	square	and	the	length	of	a	side.		You	should	use	draw_line,	draw_polyline,	or	
draw_rect.		Remember:	x	and	y	should	be	the	center	of	the	square,	not	a	corner.	
	

• Challenge:	Modify	your	program	so	the	user	can	choose	the	center	of	the	bullseye	using	a	mouse	click.		Refer	to	
the	graphics	library	handout.	
	

• Challenge:	Modify	your	program	so	the	user	can	choose	the	center	and	radius	of	the	bullseye	with	two	mouse	
clicks	(first	click	chooses	the	center,	second	click	chooses	the	a	point	on	the	border	of	the	bullseye	from	which	
you	can	compute	the	radius).		You’ll	need	to	use	the	distance	formula	for	this	one:	
	
The	distance	from	point	(x1,	y1)	to	(x2,	y2)	is	!(𝑥$ − 𝑥&)$ + (𝑦$ − 𝑦&)$.		To	use	the	square	root	function	in	
Python,	put	from math import *	at	the	top	of	your	program,	then	you	can	use	the	function	sqrt().	


