
Lists I

What is a list?

• Lists are strings on
steroids.

• A string stores an
ordered sequence of
single characters.

• A list stores an ordered sequence of any data
type.

0 1 2 3 4 5
String "banana" ->

0 1 2
<- Lists of strings

0 1 2

0 1 2 3 4 5
List of ints ->

"b" "a" "n" "a" "n" "a"

"hello" "my" "friend"

"ahoy" "me" "matey"

98 85 90 100 75 88

Why use lists?

• Lists exist so programmers can store multiple
related variables together.

• Useful when we don't know ahead of time
how many items we are going to store.
– Lists solve this problem because a single list can

hold from zero to practically any number of items
in it.

Basic list operations

• Lists are created using square brackets around
items separated by commas.
mylist = [1, 2, 3]
numbers = [-9.1, 4.77, 3.14]
fred = ["happy", "fun", "joy"]

• Lists are accessed using indices/positions just
like strings.

• Most (but not all) string functions also exist
for lists.

Strings Lists

string_var = "abc123" list_var = [item1, item2, ...]

string_var = "" list_var = []

len("abc123")

len(string_var)

len([3, 5, 7, 9])

len(list_var)

string_var[p]

string_var[p:q]

list_var[p]

list_var[p:q]

str3 = str1 + str2

str3 = "abc" + "def"

list3 = list1 + list2

list3 = [1, 2, 3] + [4, 5, 6]

"i" in "team" -> False 7 in [2, 4, 6, 8] -> False

One important difference

• Strings are immutable
– You can't change a string without making a copy

of it.
s = "abc"
s[0] = "A" # illegal!
s = "A" + s[1:] # legal

One important difference

• Lists are mutable
– Can be changed "in-place" (without explicit copying)
L = [2, 4, 6, 8, 10]
L[0] = 15 # legal
L.append(26) # legal

Compare mutable and immutable

• How can we switch the first and last letter in a
string?

• How can we switch the first and last items in a
list?

Three common ways to make a list
• Make a list that already has stuff in it:

lst = [4, 7, 3, 8]
• Make a list of a certain length that has the same

element in all positions:
lst = [0] * 4 #makes the list [0,0,0,0]
Common when you need a list of a certain length ahead of
time.

• Make an empty list:
lst = []
Common when you're going to put things in the list coming
from the user or a file.

Simple list problems

• How would we write a function to convert a
number from 1-12 into the corresponding
month of the year as a string?

def getmonth(month):

Final exam

• Currently scheduled for Sat, May 5, 8:30am

• Tentative (but pretty sure) I'll offer two
alternatives:
– Tue, May 1, 1pm (probably)
– Wed, May 2, 5:30pm (almost certainly)

Simple list problems

What does this code do?
lst = [2] * 3
lst2 = [4] * 2
lst3 = lst + lst2
for x in range(0, len(lst3), 2):

lst3[x] = -1

while True:
num = int(input("Enter number: "))
if num == -1:

break
print("Your number is", num)

lst = []
while True:

num = int(input("Enter number: "))
if num == -1:

break
lst.append(num)

• After all the numbers are read in:
– Easy: write a loop to print out the sum of all the

numbers in the list. (This loop should be separate
from the file-reading loop.)

– write a loop to find the largest and smallest
numbers in the list.

– Harder: write a loop to print out use a for loop to
print out sums of adjacent pairs of numbers in the
list (don't use sliding window; use indices)
• Hint: You don’t need the sliding window technique;

instead, use math with list indices.

• Make a text file with some integers in it, one per
line.

• Write a program to read all the numbers and
store them in a list.

• After all the numbers are read in:
– Easy: write a loop to print out the sum of all the

numbers in the list. (This loop should be separate
from the file-reading loop.)

– write a loop to find the largest and smallest numbers
in the list.

– Harder: write a loop to print out use a for loop to
print out sums of adjacent pairs of numbers in the list
(don't use sliding window; use indices)
• Hint: You don’t need the sliding window technique; instead,

use math with list indices.

