Strings IV



WARM UP:

* Write a function called count dups that counts
the number of back-to-back duplicated characters
In a string.

Example: count _dups ("balloon") returns 2.

* (Harder) Write a function called strange that
keeps all the digits in a string, but only digits that
are immediately preceded by a letter. The first
character in the string is guaranteed to be a letter.

Example: strange("al6.334LM19") returns
" 141 "



* Count duplicates:

def count _dups(s):
total = ©
for pos in range(0, len(s), 1):
if <test s[pos] for something>:
total = total + 1

return total s s[pos] the same
character as the

character immediately
to the right?




* Count duplicates:

def count _dups(s):
total = ©
for pos in range(0, len(s), 1):
if s[pos] == s[pos+1]:
total = total + 1

return total s s[pos] the same
character as the

character immediately
to the right?




* Count duplicates:

def count _dups(s):
total = ©
for pos in range(@, len(s)-1, 1):
if s[pos] == s[pos+1]:
total = total + 1

return total s s[pos] the same
character as the

character immediately
to the right?




s.startswith(t) True if the string s begins with
the string t.

s.endswith(t) True if the string s ends with the
string t.



s.find(t)

s.find(t, p)

s.replace(t, t2)

Returns the lowest index at
which substring t is found
inside s.

Same as above, but starts
searching at position p.

Returns a copy of s with all
occurrences of t replaced by t2.



s.upper() Returns a copy of s with all
etters converted to uppercase.

s.lower() Returns a copy of s with all
etters converted to lowercase.




Three common string computations

* Count the number of times something
happens in a string.

* Filter a string to keep only the characters that
satisfy some condition.

* Transform a string into a new string by
changing each character in some fashion.



Counting

look at each character:
does this character match a pattern?
if yes, increment total

total = ©
for pos in range(©, len(s), 1):
if <test s[pos] for something>:
total = total + 1



Filtering

look at each character:
does this character match a pattern?
if yes, attach the character to the answer

answer =
for pos in range(©, len(s), 1):
if <test s[pos] for something>
answer = answer + s[pos]



Transforming

look at each character:
turn this character into a new character and
attach it to the answer



Transforming

look at each character:

turn this character into a new character and

attach it to the answer

answer = ""

for pos in range(0, len(s), 1):
newchar = <do something to s[pos]>

answer = answer + newchar



Transforming

Turn every character into a hyphen:
answer = ""
for pos in range(0, len(s), 1):

newchar = "-
answer = answer + newchar



Transforming

Common to use an if statement inside a transform:
answer = ""
for pos in range(0, len(s), 1):
if <something>:
answer = answer + <something>
else:

answer = answer + <something else>



Transforming

Switch the case of all letters (lower <---> upper)

answer =

for pos in range(0, len(s), 1):

if <something>:

answer
else:
answer

answer + < >

answer + <something else>



Transforming

Transforming is often combined with filtering.

How can we change our function so uppercase/

lowercase are switched, and everything else is
removed?



Write a function called change_nums that
increments all numbers in a string by one:

— Example: change_nums("alb2") returns "a2b3"

Write a function called encode that takes a

string and encodes it using the simple cipher
A=1, B=2, C=3, and so on.

Example: encode("abc") returns "1-2-3".

Hint: use a variable letters = "abcdefgh..." and
the find function.

— What is letters.find("a")? letters.find("b")?
Challenge (hard): write a decode function.



