E/R Models

(Chapter 4)



Three Pieces of Course

= Database design
— Modeling data

= Database programming
— SQL (other languages)
— Constructing applications

= Database implementation

— Learning how the guts work



Why Learn About Database Modeling?

= The way in which data is stored is very important for
subsequent access and manipulation by SQL.

" Properties of a good data model:
— It is easy to write correct and easy to understand queries.

— Minor changes in the problem domain do not change the
schema.

— Major changes in the problem domain can be handled without
too much difficulty.

— Can support efficient database access.



Purpose of the E/R Model

The E/R model allows us to sketch the design of a
database informally.

— Represent different types of data and how they relate to
each other

Designs are drawings called entity-relationship diagrams.

Fairly mechanical ways to convert E/R diagrams to real
implementations like relational databases.

- Relational Relational
—>» E/Rd




Purpose of E/R Model

= When designing E/R diagrams,
— forget about relations/tables!

— only consider how to model the information you
need to represent in your database.



Tools

" Entities (‘entity sets’)

= Relationships (‘rel. sets’)
and mapping constraints

= Attributes ©



Entity Sets

= Entity = "thing" or "object instance" or "noun"

" Fntity set = collection of similar entities.
— Similar to a class in object-oriented languages.

= Attribute = property of an entity set.

— Generally, all entities in a set have the same set of
properties.

— Attributes can only be “primitive” types, like
strings, ints, floats. No “collection” types or
objects.



E/R Diagrams

" |n an entity-relationship diagram, each entity
set is represented by a rectangle.

= Each attribute of an entity set is represented
by an oval, with a line to the rectangle
representing its entity set.



PID

Example: Entity Sets

Number

/

Students

Courses




Relationships

= A relationship connects two or more entity
sets.

" |t is represented by a diamond, with lines to
each of the entity sets involved.

" Don’t confuse ‘relationships’ with ‘relations’!



Instance of an E/R Diagram

»= E/R diagram describes a schema, not the DB
content itself.

" However, we can visualize what the DB tuples
might look like by thinking of an instance of
the E/R diagram:

— contains instances of entity sets and
— instances of relationship sets.



Instance of an Entity Set

" For each entity set, an instance of that entity
set stores a specific set of entities.

" Each entity is a tuple containing specific values
for each attribute.

" What are the examples of entity sets for our
relations so far?



Instances of (binary) relationship sets

" Binary relation with entities E and F:

" [nstance is a set of pairs {(e, f) : eisin Eand fis in

F}

— Instance need not relate every tuple in E with every
tuple in F. Depends on what the relationship means.

(At the moment) Hard to visualize an instance of

relationship set as a table (or relation) because e

and f are entities, not simple scalar values.



Multiplicity of binary relationships

" \Many-one from A to B: when each entity in A
Is connected to at most one entity in B.

— If | give you a particular instance of entity A, you
can give me back at most one entity in B.

— But, each instance of B may have multiple As.

" One-one: when a relationship is many-one
from A to B and from B to A.

= Many-many: everything else.



Many-Many Relationships

" |n a many-many relationship, an entity of
either set can be connected to many entities
of the other set.



Many-One Relationships

= Some binary relationships are many-one from
one entity set to another.

" Each entity of the first set is connected to at
most one entity of the second set.

= But an entity of the second set can be
connected to zero, one, or many entities of
the first set.



One-One Relationships

" |n a one-one relationship, each entity of either
entity set is related to at most one entity of the
other set.



Representing Multiplicity

= Show a many-one relationship by an arrow entering
the "one" side.

"= Show a one-one relationship by arrows entering both
entity sets.



Different kinds of relationships

T
”

o1

many-many many-one one-one

O I




Exactly one

" |n some situations, we can also assert “exactly
” . .
one, i.e., each entity of one set must be
related to exactly one entity of the other set.
To do so, we use a rounded arrow.



Example: Exactly One

" Consider favorite-course between Students
and Courses.

= Some courses are not the favorite-course of
any student, so an arrow pointing into
Students would be inappropriate.

= But a student has to have a favorite-course.

Favorite
course




E/R Diagrams Day 2: Review

Entity sets (rectangles)
Attributes (ovals)

Relationships (diamonds connecting entity
sets)

Multiplicity of relationships (arrows)

Running examples: BannerWeb-style DB,
bookstore DB



Attributes on relationships

= Attributes can also be placed on a
relationship, as well as on an entity set.

" Only necessary if the attribute cannot be
determined from a single entity instance.

= Example:

— Students and Courses: where do we store grades?



Multiway relationships

m Rare

" An arrow pointing to entity set E means if we
select one entity from each of the other entity
sets in the relationship, those entities are
related to (at most/exactly) one entity in E.

" Multiway relationships can often be converted
into multiple binary relationships. (later)



Roles in Relationships

" Can the same entity set appear more than

once in the same relationship?

" Prerequisite relationship between two

Courses ?

/_\
Courses

= But which course is the pre-req?



Roles in Relationships

" |abel the connecting lines with the role of the

entity
Requirement !
<_ C
ourses
Gotner

Requirer




Parallel Relationships

= Can there be more than one relationship

between the same pair of entities?

= TA and Take relationship between Students

Courses

Students \




Converting Multiway to Binary

" |t is easy to convert a multiway relationship to
multiple binary relationships

— Create a new connecting entity set. Think of its
entities as the tuples in the relationship set for the
multiway relationship

— Introduce many-one relationships from the
connecting entity set to each of the entities in the
original relationship

— If an entity set plays > 1 role, create a relationship
for each role



Try this

Partners or triples.

Design an E/R diagram for a bank, including
info about customers and accounts.

Customer info: name, addr, phone, SSN.

Account info: type (checking/savings),
balance.

Accounts may have multiple customers;
customers may have multiple accounts.



Try this

What if an account can have only one
customer?

What if a customer can have only one
account?

What if a customer can have multiple
addresses and multiple phones?

(Think pre-cell-phones) What if we want to
associate phones with addresses?



Is-A Hierarchies (Subclasses)

= Certain entities might need to store special
properties that not all entities possess.

" Create two entity sets: a “super-entity” and a
“sub-entity” and connect them with a Is-A
relationship (triangle instead of diamond).



Good design principles (4.2)

= Faithfulness

— Entity sets & attributes should reflect reality in
choice of attributes and multiplicity of
relationships.

— The real-world situation can dictate what
faithfulness means.

— E/R diagram cannot convey all the information.

— Consider Students/Courses/Profs & multiplicity —
can be different ways to do this diagram.



Good design principles

= Avoid redundancy

— Watch out for an attribute duplicating a
relationship.

" Choosing the right relationships

— Does every relationship express all the
information you need it to express?



Good design principles

" Picking an attribute or entity set
= Replace E by an attribute when

— All relationships involving E must have arrows
entering E.

— If E has >1 attribute, then no attribute depends on
any other attribute.

— No relationship involves E more than once.



Keys in E/R diagrams (4.3)

" Entity sets will have one or more keys.

— Customary to choose a primary key and underline
the attributes.

" Possible for an entity set's key attributes to
belong to another entity set in certain
situations.

— Is-a hierarchies
— weak entity sets (later)



One perspective on real-world keys

Multi-attribute and/or string keys...
...can be time consuming and sometimes may not guarantee a lack
of duplicates.
— movie(title, year, date-released, etc)
— title + year = lots to type to identify a movie in SQL.
— integer key movielD saves typing!
...break encapsulation
— patient(first, last, DOB, etc)

— Are these keys being transmitted in an insecure manner? Is this a
security/privacy risk?

— integer key patientID fixes this.

...are brittle
— Name change? Two movies with the same name/year?
— Unique integer ID always exists, never changes.




Referential integrity in E/R

= Referential integrity: requires every value of
an attribute in one relation to appear as the

value of an attribute in another (or the same)
relation.

" Enforced through multiplicity arrows

= Degree constraints can be added to further
restrict multiplicity.



Try US Congress handout



Weak entity sets

" A weak entity set is an entity set whose (primary)
key contains attributes from one or more other
entity sets.

" |[n other words, an entity set E is weak if in order
to identify entities of E uniquely, we need to
follow one or more many-one relationships from

E and include the key of the related entity sets in
E's key.

" Possible that all attributes in a weak entity set's
key come from other entity sets.



Example

= Consider players in a sports league:
— Name is not a key (might be duplicate names)

— Number is certainly not a key (numbers will be
duplicated across teams)

— But number + team should be a key

name number @

= Use double border for weak entity sets and their
supporting many-one relationships.



How about courses and departments?

Department

~

N\ (Name TN

( Classroom )

R ) N A

Students 4} Courses I
\/ .<l_52r_ollm?rlt_/.
Professors
] (C &flc—e/\,




Keys for a weak entity set

= Arelationship R from a weak entity set Eto F
is supporting if
— Ris a binary, many-one relationship from E to F.
— R has referential integrity from E to F.

" Fsupplies its key attributes to define E's key.

" |f F itself is a weak entity set, then we must
find F's supporting relationships and also use
the keys from those supporting entity sets.



Where do weak entity sets come
from?

" Cause 1: Implicit hierarchies not from an "is-a
relationship.

— A player “belongs to” a team, or a flight “is flown by”
an airline.

— Happens when a piece of a key is represented as an
entity set rather than an attribute.

e Can (technically) be solved by putting a unique ID on an
entity set, but sometimes this causes more trouble than it’s
worth.

— "is-a" hierarchies seem to lead to weak entity sets
(subclasses), but we don't notate them with double
borders because their hierarchical relationships are
always one-one.



Where do weak entity sets come
from?

= Cause 2: Connecting entity sets created by
eliminating a multi-way relationship.
— Often, connecting entity sets have no attributes of

their own; they must pick up their key attributes
from the entity sets they connect.

— Example: A CUSTOMER rents a CAR from a
SALESPERSON.



Converting E/R diagrams to relational
designs

" Entity set -> Relation
— Attribute of entity set -> attribute of relation
— Key of entity set -> primary key of relation

= Relationship -> Relation

— Attribute of relationship -> attribute of relation

— Key attribute of connecting entity set -> key
attribute of relation

" Special cases: weak entity sets, "is-a
hierarchies, combining relations.



=

Departments

Students

Courses

valuatio Teach

Cerade)

Professorsl




Handling multiple roles

Requester

Person

Recipient

If an entity set E appears k > 1 times in a relationship
R, then the key attributes for E appear k times in the
relation for R, appropriately renamed.



Handling weak entity sets

" For each weak entity set W, create a relation
with attributes:
— attributes of W
— attributes of supporting relationships for W
— key attributes of supporting entity sets for W



Supporting Relationships

Depanments:—@
4

= Schema for Departments is Departments(Name)

= Schema for Courses is Courses(Number,

DeptName, CourseName, Classroom,
Enrollment)

= \What is the schema for Offer?



Supporting Relationships

Department —@

'
Courses —

Enrollment

= \What is the schema for offer? @) —
— Offer(Name, Number, DeptName)

— But Name and DeptName are identical, so the schema
for Offer is Offer(Number, DeptName)

— The schema for Offer is a subset of the schema for the
weak entity set, so we can dispense with the relation

for Offer.

— Key point: Don't make a relation for supporting
relationships.




Summary of Weak Entity Sets

N
S CT=

Courses

" |f Wis a weak entity set, the relation for W has a schema
whose attributes are

— all attributes of W
— all attributes of supporting relationships for W

— for each supporting relationship for W to an entity set E
* the key attributes of E

" There is no relation for any supporting relationship for W



Combining Relations

" Consider many-one Teach relationship from
Courses to Professors

= Schemas are:

Courses(Number, DepartmentName, CourseName,
Classroom, Enrollment)

Professors(Name, Office, Age)

Teach(Number, DepartmentName, ProfessorName,
Office)




Combining Relations

Courses(Number, DepartmentName, CourseName, Classroom,
Enrollment)

Professors(Name, Office, Age)
Teach(Number, DepartmentName, ProfessorName, Office)

The key for Courses uniquely determines all attributes of
Teach

We can combine the relations for Courses and Teach into
a single relation whose attributes are

— All the attributes for Courses,

— Any attributes of Teach, and

— The key attributes of Professors



Rules for Combining Relations

= \We can combine into one relation Q
— The relation for an entity set E

— all many-to-one relationships R1, R2, ..., Rk from E to
other entity sets E1, E2, ..., Ek respectively

= The attributes of Q are
— All the attributes of E
— Any attributes of R1, R2, ..., Rk
— The key attributes of E1, E2, ..., Ek
" Combining a many-many relationship with one of

its entity sets often leads to redundancy. You
probably never want to do this!



Is-a to Relational

" Three approaches:
— E/R viewpoint
— Object-oriented viewpoint
— “Flatten” viewpoint



Rules Satisfied by an Is-a Hierarchy

" The hierarchy has a root entity set.

" The root entity set has a key that identifies
every entity represented by the hierarchy.

= A particular entity can have components that
belong to entity sets of any subtree of the

hierarchy, as long as that subtree includes the
root.



Example ISA hierarchy



Is-a to Relational Method I: E/R
Approach

Create a relation for each entity set

The attributes of the relation for a non-root
entity set E are

— the attributes forming the key (obtained from the
root) and

— any attributes of E itself

An entity with components in multiple entity sets
has tuples in all the relations corresponding to
these entity sets

Do not create a relation for any is-a relationship
Create a relation for every other relationship



Is-a to Relational Method II: Object
Oriented Approach

" Treat entities as objects that are members of a
particular subtree in the tree.

— Subtrees must contain the root.

— Subtrees may contain more than one entity set.

= What are all the logically-possible classes for
books in our hierarchy?



Is-a to Relational Method II: Object
Oriented Approach

" Enumerate all subtrees of the hierarchy that
contain the root.

= For each such subtree,

— Create a relation that represents entities that have
components in exactly that subtree.

— The schema for this relation has all the attributes
of all the entity sets in that subtree.



Is-a to Relational Method lll: “Flatten”
Approach (or "NULLs")

= Make one relation for the whole hierarchical
structure.

= Use NULL for any attribute that is not defined
for a particular entity.



Comparison of the Three Approaches

= Trade-offs

— In general, we want to minimize joins (takes time)
and also minimize duplicated or redundant
information (takes space [memory]).

— It is expensive to answer queries involving several
relations (advantage: flatten)

— E/R approach works well for some queries where
info is duplicated among relations.

— E/R approach is hard for other queries because we
may heed joins.



Comparison of the Three Approaches

= Number of relations for n relations in the
hierarchy

— We like to have a small number of relations
— Flatten
|
— E/R
°n
— 00

e Can be 27n



Comparison of the Three Approaches

= Redundancy and space usage

— Flatten

* May have a large number of NULLs

 (also prevents you from using NULL to denote
something besides class membership)

— E/R

* Several tuples per entity, but only key attributes are
repeated

— 00
* Only one tuple per entity



