Functional Dependencies

Halfway done!

e So far:
— Relational algebra (theory)
— SQL (practice)
— E/R modeling (theory)
— HTML/Flask/Python (practice)
— Midterm (super fun!)

* Next up:

— Database design theory (builds on E/R modeling, more
theory)

— Data structures (practice)
— Query optimization, transactions (theory + practice!)
— Non-relational DB models (NoSQL)

More DB design theory

* E/R diagrams can still leave you with
redundancies in your schemas.

 Redundancy: Storing something twice in the
DB when you only need to store it once.

‘ ll : | : 2 A
(Tf“" TOUrs.
i

Mon.-Thur.
11a.m.-9p.m.

Fri.-Sat.
11Ta.m.- 9p.m.

i
|

REDUNDANCY

You're doing it right.

(Prepay in
Advance

Often, our first attempts at DB schemas can be
improved, especially by eliminating redundancy.

Functional dependencies help us do this.

Whatis a FD?

e Statement of the form:

— If two tuples of relation R agree on attributes
A....A_ then they must agree on tuples B,...B,..

— We say A, through A_ functionally determine B,
through B,

— i.e., if you have two rows in a table, and the two
rows all have the same values for A,...A_, then the
rows must have the same values for B,...B_..

Whatis a FD?

* Writeas X->Y
— X and Y are sets of attributes from a relation.
— Read: "X functionally determines Y"
* |ntuitive definitions:
— "If you know X, you can determine Y."
— "For each X, there can be only one Y
* Guidelines:

— Often Y is a single attribute, though it doesn’t
have to be.

Whatis a FD?

* |f every instance of a relation will make a FD
true, then the relation satisfies the FD.

— Determined from real-world knowledge, not DB.

* An FD is a constraint on a single relational
schema (one table).
— It must hold on every instance of the relation.

— Therefore, you cannot deduce an FD from a
relational instance.

StudentR# | StudentName __| CRN | ProfName _|Title | Grade_

Harry Potter

101 Harry Potter

101 Harry Potter

102 Hermione Granger
102 Hermione Granger
103 Ronald Weasley

What are the FDs?

1
2
3
1
2
1

Snape
McGonagall
Trelawney
Snape
McGonagall

Snape

Potions
Transfiguration
Divination
Potions
Transfiguration

Potions

o > ™ O W >

15

StudentR# | StudentName __| CRN | ProfName _|Title | Grade_

Harry Potter 1 Snape Potions A
101 Harry Potter 2 McGonagall Transfiguration B
101 Harry Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione Granger 2 McGonagall Transfiguration A
103 Ronald Weasley 1 Snape Potions B

StudentR# -> StudentName
CRN -> ProfName

CRN -> Title

StudentR# CRN -> Grade

16

StudentR# | StudentName __| CRN | ProfName _|Title | Grade_

101
101
102
102
103

Is CRN -> Grade a FD?

Harry Potter
Harry Potter
Harry Potter
Hermione Granger
Hermione Granger

Ronald Weasley

1
2
3
1
2
1

Snape
McGonagall
Trelawney
Snape
McGonagall

Snape

Potions
Transfiguration
Divination
Potions
Transfiguration

Potions

o > ™ O W >

17

Where do FDs come from?

* "Key-ness" of attributes
* Domain and application constraints
* Real world constraints

Definition of Keys

* FDs allow us to formally define keys

* Aset of attributes {A, A,, ..., A} is a key for
relation R if it satisfies:

Uniqueness: {A,, A,, ..., A } functionally determine
all the other attributes of R

Minimality: no proper subset of {A;, A,, ..., A/}
functionally determines all other attributes of R.

StudentR# | StudentName __| CRN | ProfName _|Title | Grade_

Harry Potter

101 Harry Potter

101 Harry Potter

102 Hermione Granger
102 Hermione Granger
103 Ronald Weasley

What are the keys?

1
2
3
1
2
1

Snape
McGonagall
Trelawney
Snape
McGonagall

Snape

Potions
Transfiguration
Divination
Potions
Transfiguration

Potions

o > ™ O W >

20

Two things you already know and one
thing you don't:

* A relation can have more than one key.

e Usually one key is known as the primary key.

* FDs have nothing to do with primary keys, just
keys.

Another way to think about FDs

* ForaFDA;A,...A ->B;B,...B

— Equivalent to the set of FDs
* AJA, ... A > B,
* AJ/A,...A ->B, (etc, through)
c AJA, ... A >B.:
— You should be able to imagine a function
f(A,, A,,...,A,) that computes a unique B, (or B,...).

m.

Superkeys

24

Superkeys

* A superkey (superset of a key) is a set of
attributes that contains a key.

* |In other words, a superkey satisfies the

uniqueness part of the key definition, but may
not satisfy the minimality part.

StudentR# | StudentName __| CRN | ProfName _|Title | Grade_

101
101
102
102
103

Harry Potter
Harry Potter
Harry Potter
Hermione Granger
Hermione Granger

Ronald Weasley

1
2
3
1
2
1

Snape
McGonagall
Trelawney
Snape
McGonagall

Snape

Potions
Transfiguration
Divination
Potions
Transfiguration

Potions

What are the keys and superkeys?

o > ™ O W >

27

With a partner

Consider a relation about people in the USA,
including name, SSN, street address, city,
state, zip code, area code, and 7-digit phone
number.

What FDs would you expect to hold?
What are the keys for this relation?

Hints: Can an area code straddle two states?
Can a zip code straddle two area codes?

Rules for Manipulating FDs

Learn how to reason about FDs

Define rules for deriving new FDs from a given
set of FDs

Example: R(A, B, C) satisfies FDs A->B, B->C.
— What others does it satisfy?

—A->C

— What is the key for R?

— A (because A->B and A->C)

Why study FDs?

* Formal framework for making decisions about the
structure of database tables.

 We can use them to algorithmically check if
— The (primary) key we pick for a table is a "good" key.

— There will be any redundant (duplicate) data in our
table.

— When we join our tables together, it will be done in an
efficient manner.

— (next week for all three of these)

Review

* FD: X->Y: for each X, there is only oneY.
— Knowing the value of X tells you the value of Y.

* Superkey: a set of attributes that functionally
determines all of the other attributes of a
relation.

* Key: a superkey that is also minimal (can't remove
any attributes from it and still functionally
determine all the other attributes).

Equivalence of FDs

e Why?
— To derive new FDs from a set of FDs

* An FD F follows from a set of FDs T if every
relation instance that satisfies all the FDs in T also
satisfies F

— A 2 Cfollows from T = {A—=>B, B>}

 Two sets of FDs S and T are equivalent if each FD

in S follows from T and each FD in T follows from
S

— S={A—>B,B>C, A=>C}and T={A—>B, B>C} are
equivalent

Splitting and Combining FDs

e The set of FDs
— A1 A2 A3...An = B1
— A1 A2 A3...An 2> B2

is equivalent to the FD
— A1 A2 A3..An > B1B2B3..Bm

* This equivalence implies two rules:
— Splitting rule
— Combining rule

— These rules work because all the FDs in S and T have
identical left hand sides

Splitting and Combining FDs

Can we split and combine left hand sides of
FDs?

Consider a relation Flights(airline, flightNum,
source, dest)

What are FDs?

Does the FD “flightNum -> source” follow from
“airline flightNum -> source”?

— No!

Triviality of FDs

 AFD A1 A2..An 2 B1B2..Bmiis
— Trivial if the B’s are a subset of the A’s
{Bl, B, ... B,,} C {Al, Ao, ... A,,}
— Non-trivial if at least one B is not among the A’s

{B1.By....By} — {A1. As, ... Ay} # 0

— Completely non-trivial if none of the B’s are
among the A’s

{B1.Bs....By} N{A1 As, .. . At =0

— Most real-world FDs are expressed completely
non-trivially.

Triviality of FDs

* What good are trivial and non-trivial FDs?
— Trivial dependencies are always true

— They help simplify reasoning about FDs

* Trivial dependency rule: The FD A1 A2...An - B1 B2...Bm is equivalent to
the FD A1 A2...An = C1 C2...Ck, where the C’s are those B’s that are not
A's, i.e.

 Example: Suppose this FD holds: SSN -> birthday SSN
Then this FD also holds: SSN -> birthday

Find a trivial FD:

StudentR# | StudentName __| CRN | ProfName _|Title | Grade_

101
101
102
102
103

Harry Potter
Harry Potter
Harry Potter
Hermione Granger
Hermione Granger

Ronald Weasley

1
2
3
1
2
1

Snape
McGonagall
Trelawney
Snape
McGonagall

Snape

Potions
Transfiguration
Divination
Potions
Transfiguration

Potions

o > ™ O W >

37

Review

e Asetof FDs S follows from another set of FDs T iff
all the FDs in S are implied by those in T.

— (e.g., through the splitting/combining rule, transitivity,
etc)

 Two sets of FDs are equivalent if each set follows
from the other.

Closure of a set of attributes

Suppose you have a set of attributes {A1], ...,
An} and a set of FDs S.

The closure of {A1l, ..., An} under S is the set of
attributes B such that

— every relation in S also satisfies Al...An -> B.

Intuitive def'n: B is the largest set of attributes
that we can deduce from knowing Al, ..., An.

Closure of {Al,...An} denoted by {Al,...An}*

Closure of Attributes: Algorithm

1. Use the splitting rule so that each FD in S has
one attribute on the right (always possible).

2. Set X={A1, A2 ..., An}
3. Find aFD B1 B2...Bk 2 Cin S such that
{B1B2..Bk} C XbutC¢g X

4. Add Cto X

5. Repeat the last two steps until you can’t find
C

Why is the algorithm correct?

Read 3.2.5 in textbook

Closure of Attributes: Example

e Suppose a relation R(A, B, C, D, E, F) has FDs:
—AB—>C,BC>AD,D2>E CF—>B
* Find the closures of:
—{A, B}
—{B, C, F}
—{A, F}
under the FDs above.

Note about closure

The closure of a set of attributes will be
different for differing sets of FDs.

R(A, B, C, D); with FDs A ->B and C -> D.
— What is {A, B}*?

R(A, B, C); with FDs A->BCand C->D

— What is {A, B}*?

Takeaway: Closure of a set of attributes is
meaningless without a set of FDs.

Why compute closures?

* Can test whether any FD follows from a set of
other FDs.

— Say we know a set of FDs S, and we want to check if
a "new" FD Al...An -> B follows from S.

— Simply check if Bisin {Al, A2, ..., An}"' under S.

* To prove the correctness of rules for
manipulating FDs.

* Can compute keys algorithmically.

Algorithm for computing keys

* Recall a superkey is a set of attributes that
functionally determines all the other
attributes.

* The closure of a set of attributes Al...An under
a set of FDs gives you all the other attributes

in R that can be functionally determined from
knowing Al...An.

e Let’s figure out the connection between
superkeys and attribute closure.

Connection between closure and keys

e Suppose we have a relation R(A1, A2, ..., An).
* A superkey is a set of attributes that functionally
determines all the other attributes of a relation.
— Set X is a superkey for Riff ... ?
« X" ={A1, A2, ..., An}
* Akeyis asuperkey that is also minimal (can’t
leave any attributes out of it):

— Set X is a minimal superkey (a key) iff ... ?
e For any attribute A in X, (X-{A})+ #{Al, A2, ..., An}

(Brute-force) algorithm for computing
keys

* Given:

— Arelation R (A1, A2, ..., An)

— The set of all FDs S that hold in R
* Find:

— Compute all the keys of R

1. For every subset K of {Al, A2, ..., An} compute its
closure

2. If K*={A1, A2, ... An} and for every attribute A,
(K —{A})* is not {Al, A2, ... An}, then output K as

a key

Students and Profs

* Suppose we have one single relation with
attributes:

— R#
— Student Name

— ProfID (ID of professor teaching a class with the
student)

— ProfName
— AdvisorID
— AdvisorName

Armstrong’s Axioms

e \WWe can use closures of
attributes to determine if any

FD follows from a given set of
FDs

 Armstrong's axioms: complete
set of inference rules from
. «r . . Not the right W. W. Armstrong.
WhICh It IS pOSSIbIe tO derlve This is Warwick Windridge
every FD that follows from a Armstrong, an Australian

] cricketer. He did not invent these
given set. axioms. They were originated by
William Ward Armstrong, who is
Canadian, and does not have a

picture on Wikipedia.
57

’ . X, Y, and Z are sets
Armstrong’s AXIOmMS of attributes.

* Reflexivity
YCX=X—>Y

— E.g. ssn name > ssn
— (always gives you a trivial FD)
* Augmentation
X—=Y=XW-—=YW

— E.g. ssn 2 name can give you
ssn grade = name grade

58

| . X, Y, and Z are
Armstrong’'s AXIOMS sets of attributes.
* Transitivity

X—Y]
Y—=Z

= X =/

e.g. if ssn = address and address > tax-rate
then
ssn = tax-rate

59

Note on notation

Relation Schema: R(A1, A2, A3): parentheses
surround attributes, attributes separated by
commas.

Set of attributes: {A1, A2, A3}: curly braces
surround attributes, attributes separated by
commas

FD: A1 A2 = A3: no parentheses or curly braces,
attributes separated by spaces, arrows separates
left hand side and right hand side

Set of FDs: {A1 A2 = A3, A2 = A1l}: curly braces
surround FDs, FDs separated by commas

Computing Closures of FDs

* Many times we are given a set of FDs and are
interested in learning if there is a simpler set
of FDs that has all the same implications that
the original set does.

 To compute the closure of a set of FDs,
repeatedly apply Armstrong’s Axioms until you
cannot find any new FDs.

Examples of Computing Closures of
FDs

* (Let us include only completely non-trivial FDs
in these examples, with a single attribute on
the right)

 F={A—>B, B>C}

e {F}r="77?

Examples of Computing Closures of
FDs

* (Let us include only completely non-trivial FDs
in these examples, with a single attribute on
the right)

 F={A—>B, B>C}

 {F}*={A—>B,B—>C, A>C, AC>B, AB>C}

Examples of Computing Closures of
FDs

* (Let us include only completely non-trivial FDs
in these examples, with a single attribute on

the right)
e Suppose we have the relation R(A, B, C)
« F={AB—>C, BC2>A, AC—>B}
e {F}*=77?

Examples of Computing Closures of
FDs

* (Let us include only completely non-trivial FDs
in these examples, with a single attribute on

the right)
e Suppose we have the relation R(A, B, C)
« F={AB—>C, BC2>A, AC—>B}
 {F}*={AB—>C, BC=>A, AC—>B}

Examples of Computing Closures of
FDs

* (Let us include only completely non-trivial FDs
in these examples, with a single attribute on

the right)
e Suppose we have the relation R(A, B, C)
« F={A—>B, B>C, C>D}
o {F}*=77

Examples of Computing Closures of
FDs

* (Let us include only completely non-trivial FDs
in these examples, with a single attribute on

the right)
e Suppose we have the relation R(A, B, C)
« F={A—>B, B>C, C>D}
 {F}*={A—>B,B—>C, C>D, A=>C, A>D, B>D,
e}

Closures of Attributes vs Closure of FDs

e Closure of attributes:
— Takes a set of attributes A and a set of FDs S.

— Produces a set of attributes (all the attribs that can be
functionally determined from A, given S).

— Used for computing keys, checking if an FD follows
from a set of FDs.

* Closure of a set of FDs:
— Takes a set of FDs.
— Produces a set of FDs (all the FDs that follow from S).

— Can be used for verifying a minimal basis, but also can
verify by using closure of attributes.

Basis Set of FDs

* Inlinear algebra, a basis
is the smallest set of
linearly independent
vectors such that you
can build any other
vector out of the basis
vectors.

78

Basis Set of FDs

* |n databases, a (minimal)
basis for a set of FDs S is the
smallest set of FDs that is
equivalent to S.

— That is, all of the FDs in S
follow from the basis set of
FDs.

79

Minimal basis

e Given a set of FDs S, a minimal basis for S is
another set of FDs B where:

— All the FDs in B have singleton right sides.

— If any FD is removed from B, the result is no longer a
basis.

— |If we remove any attribute from the left side of any FD
in B, the result is no longer a basis.

* Like in linear algebra, there can be multiple
minimal bases for a set of FDs, though unlike in
linear algebra, two minimal bases for a set of FDs
may be different sizes.

Example of Minimal Basis

* R(A, B, C) is a relation such that each attribute
functionally determines the other two
attributes.

e What are the FDs that hold in R and what are
the minimal bases?

— (Assume only one attribute on the right-hand side,
only non-trivial FDs)

Example of Minimal Basis

R(A, B, C) is a relation such that each attribute
functionally determines the other two attributes

What are the FDs that hold in R and what are the
minimal bases?

— (Assume only one attribute on the right-hand side,
only non-trivial FDs)

FDs: A>B, A>C, B2>A, B>C, C2A, C2>B, AB—->C,
BC>A, AC—>B

Minimal Bases: {A=>B, B>A, B=>C, C=>B},
{A—=>B, B2>C, C=2>A} etc.

