
Functional Dependencies

Chapter 3

1



Halfway done!
• So far:
– Relational algebra (theory)
– SQL (practice)
– E/R modeling (theory)
– HTML/Flask/Python (practice)
– Midterm (super fun!)

• Next up:
– Database design theory (builds on E/R modeling, more 

theory)
– Data structures (practice)
– Query optimization, transactions (theory + practice!)
– Non-relational DB models (NoSQL)

2



More DB design theory

• E/R diagrams can still leave you with 
redundancies in your schemas.

• Redundancy: Storing something twice in the 
DB when you only need to store it once.

3



4



5



Often, our first attempts at DB schemas can be 
improved, especially by eliminating redundancy.

Functional dependencies help us do this.

6



What is a FD?

• Statement of the form:
– If two tuples of relation R agree on attributes 

A1…An, then they must agree on tuples B1…Bm.
– We say A1 through An functionally determine B1

through Bm.
– i.e., if you have two rows in a table, and the two 

rows all have the same values for A1…An, then the 
rows must have the same values for B1…Bm.

8



What is a FD?

• Write as X -> Y
– X and Y are sets of attributes from a relation.
– Read: "X functionally determines Y"

• Intuitive definitions:
– "If you know X, you can determine Y."
– "For each X, there can be only one Y.”

• Guidelines:
– Often Y is a single attribute, though it doesn’t 

have to be.

9



What is a FD?

• If every instance of a relation will make a FD 
true, then the relation satisfies the FD.
– Determined from real-world knowledge, not DB.

• An FD is a constraint on a single relational 
schema (one table).
– It must hold on every instance of the relation.
– Therefore, you cannot deduce an FD from a 

relational instance.

11



StudentR# StudentName CRN ProfName Title Grade
101 Harry Potter 1 Snape Potions A
101 Harry Potter 2 McGonagall Transfiguration B

101 Harry Potter 3 Trelawney Divination C

102 Hermione Granger 1 Snape Potions B
102 Hermione Granger 2 McGonagall Transfiguration A

103 Ronald Weasley 1 Snape Potions B

What are the FDs?

15



StudentR# StudentName CRN ProfName Title Grade
101 Harry Potter 1 Snape Potions A
101 Harry Potter 2 McGonagall Transfiguration B

101 Harry Potter 3 Trelawney Divination C

102 Hermione Granger 1 Snape Potions B
102 Hermione Granger 2 McGonagall Transfiguration A

103 Ronald Weasley 1 Snape Potions B

StudentR# -> StudentName
CRN -> ProfName
CRN -> Title
StudentR# CRN -> Grade

16



StudentR# StudentName CRN ProfName Title Grade
101 Harry Potter 1 Snape Potions A

101 Harry Potter 2 McGonagall Transfiguration B

101 Harry Potter 3 Trelawney Divination C

102 Hermione Granger 1 Snape Potions B

102 Hermione Granger 2 McGonagall Transfiguration A

103 Ronald Weasley 1 Snape Potions B

Is CRN -> Grade a FD?

17



Where do FDs come from?

• "Key-ness" of attributes
• Domain and application constraints
• Real world constraints

18



Definition of Keys
• FDs allow us to formally define keys
• A set of attributes {A1, A2, …, An} is a key for 

relation R if it satisfies:

Uniqueness: {A1, A2, …, An} functionally determine 
all the other attributes of R

Minimality: no proper subset of {A1, A2, …, An} 
functionally determines all other attributes of R.

19



StudentR# StudentName CRN ProfName Title Grade
101 Harry Potter 1 Snape Potions A
101 Harry Potter 2 McGonagall Transfiguration B
101 Harry Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione Granger 2 McGonagall Transfiguration A
103 Ronald Weasley 1 Snape Potions B

What are the keys?

20



Two things you already know and one 
thing you don't:

• A relation can have more than one key.
• Usually one key is known as the primary key.
• FDs have nothing to do with primary keys, just 

keys.

22



Another way to think about FDs

• For a FD A1 A2 … An -> B1 B2 … Bm:

– Equivalent to the set of FDs

• A1 A2 … An -> B1

• A1 A2 … An -> B2  (etc, through)
• A1 A2 … An -> Bm:

– You should be able to imagine a function

f(A1, A2,…,An) that computes a unique B1 (or B2…).

23



Superkeys

24



Superkeys

• A superkey (superset of a key) is a set of 
attributes that contains a key.

• In other words, a superkey satisfies the 
uniqueness part of the key definition, but may 
not satisfy the minimality part.

25



StudentR# StudentName CRN ProfName Title Grade
101 Harry Potter 1 Snape Potions A
101 Harry Potter 2 McGonagall Transfiguration B

101 Harry Potter 3 Trelawney Divination C

102 Hermione Granger 1 Snape Potions B
102 Hermione Granger 2 McGonagall Transfiguration A

103 Ronald Weasley 1 Snape Potions B

What are the keys and superkeys?

27



With a partner

• Consider a relation about people in the USA, 
including name, SSN, street address, city, 
state, zip code, area code, and 7-digit phone 
number. 

• What FDs would you expect to hold?
• What are the keys for this relation?
• Hints: Can an area code straddle two states?  

Can a zip code straddle two area codes?

28



Rules for Manipulating FDs

• Learn how to reason about FDs
• Define rules for deriving new FDs from a given 

set of FDs
• Example: R(A, B, C) satisfies FDs A->B, B->C.
– What others does it satisfy? 
– A -> C
– What is the key for R? 
– A (because A->B and A->C)

29



Why study FDs?

• Formal framework for making decisions about the 
structure of database tables.

• We can use them to algorithmically check if 
– The (primary) key we pick for a table is a "good" key.
– There will be any redundant (duplicate) data in our 

table.
– When we join our tables together, it will be done in an 

efficient manner.
– (next week for all three of these)

30



Review

• FD:  X -> Y: for each X, there is only one Y.
– Knowing the value of X tells you the value of Y.

• Superkey: a set of attributes that functionally 
determines all of the other attributes of a 
relation.

• Key: a superkey that is also minimal (can't remove 
any attributes from it and still functionally 
determine all the other attributes).

31



Equivalence of FDs
• Why?
– To derive new FDs from a set of FDs

• An FD F follows from a set of FDs T if every 
relation instance that satisfies all the FDs in T also 
satisfies F
– A à C follows from T = {AàB, BàC}

• Two sets of FDs S and T are equivalent if each FD 
in S follows from T and each FD in T follows from 
S
– S = {AàB, BàC, AàC} and T = {AàB, BàC} are 

equivalent

32



Splitting and Combining FDs
• The set of FDs
– A1 A2 A3…An à B1
– A1 A2 A3…An à B2
– …
is equivalent to the FD
– A1 A2 A3…An à B1 B2 B3 … Bm

• This equivalence implies two rules:
– Splitting rule
– Combining rule
– These rules work because all the FDs in S and T have 

identical left hand sides

33



Splitting and Combining FDs

• Can we split and combine left hand sides of 
FDs?

• Consider a relation Flights(airline, flightNum, 
source, dest)

• What are FDs?
• Does the FD “flightNum -> source” follow from 

“airline flightNum -> source”?
– No!

34



Triviality of FDs
• A FD A1 A2…An à B1 B2…Bm is 
– Trivial if the B’s are a subset of the A’s

– Non-trivial if at least one B is not among the A’s 

– Completely non-trivial if none of the B’s are 
among the A’s

– Most real-world FDs are expressed completely 
non-trivially.

35



Triviality of FDs

• What good are trivial and non-trivial FDs?
– Trivial dependencies are always true
– They help simplify reasoning about FDs

• Trivial dependency rule: The FD A1 A2…An à B1 B2…Bm is equivalent to 
the FD A1 A2…An à C1 C2...Ck, where the C’s are those B’s that are not 
A’s, i.e.

• Example:  Suppose this FD holds:     SSN -> birthday SSN
Then this FD also holds:  SSN -> birthday

36



• Find a trivial FD:

37

StudentR# StudentName CRN ProfName Title Grade
101 Harry Potter 1 Snape Potions A
101 Harry Potter 2 McGonagall Transfiguration B
101 Harry Potter 3 Trelawney Divination C
102 Hermione Granger 1 Snape Potions B
102 Hermione Granger 2 McGonagall Transfiguration A
103 Ronald Weasley 1 Snape Potions B



Review

• A set of FDs S follows from another set of FDs T iff
all the FDs in S are implied by those in T.
– (e.g., through the splitting/combining rule, transitivity, 

etc)
• Two sets of FDs are equivalent if each set follows 

from the other.

38



Closure of a set of attributes

• Suppose you have a set of attributes {A1, …, 
An} and a set of FDs S.

• The closure of {A1, …, An} under S is the set of 
attributes B such that
– every relation in S also satisfies A1…An -> B.

• Intuitive def'n: B is the largest set of attributes 
that we can deduce from knowing A1, …, An.

• Closure of {A1,…An} denoted by {A1,…An}+

39



Closure of Attributes: Algorithm

1. Use the splitting rule so that each FD in S has 
one attribute on the right (always possible).

2. Set X = {A1, A2 …, An} 
3. Find a FD B1 B2…Bk à C in S such that 
{B1 B2 … Bk}      X but C     X
4. Add C to X
5. Repeat the last two steps until you can’t find 

C

40

Why is the algorithm correct? 
Read 3.2.5 in textbook 



Closure of Attributes: Example

• Suppose a relation R(A, B, C, D, E, F) has FDs:
– AB à C, BC à AD, D à E, CF à B

• Find the closures of:
– {A, B}
– {B, C, F}
– {A, F}
under the FDs above.

41



Note about closure

• The closure of a set of attributes will be 
different for differing sets of FDs.

• R(A, B, C, D); with FDs A -> B and C -> D.
– What is {A, B}+?

• R(A, B, C); with FDs A -> BC and C -> D
– What is {A, B}+?

• Takeaway: Closure of a set of attributes is 
meaningless without a set of FDs.

42



Why compute closures?

• Can test whether any FD follows from a set of 
other FDs.
– Say we know a set of FDs S, and we want to check if 

a "new" FD A1…An -> B follows from S.

– Simply check if B is in {A1, A2, …, An}+ under S.

• To prove the correctness of rules for 
manipulating FDs.

• Can compute keys algorithmically.

50



Algorithm for computing keys

• Recall a superkey is a set of attributes that 
functionally determines all the other 
attributes.

• The closure of a set of attributes A1…An under 
a set of FDs gives you all the other attributes 
in R that can be functionally determined from 
knowing A1…An.

• Let’s figure out the connection between 
superkeys and attribute closure. 

53



Connection between closure and keys
• Suppose we have a relation R(A1, A2, …, An).
• A superkey is a set of attributes that functionally 

determines all the other attributes of a relation.
– Set X is a superkey for R iff … ?

• X+ = {A1, A2, …, An}

• A key is a superkey that is also minimal (can’t 
leave any attributes out of it):
– Set X is a minimal superkey (a key) iff … ?

• For any attribute A in X, (X-{A})+ ≠ {A1, A2, …, An}

54



(Brute-force) algorithm for computing 
keys

• Given:
– A relation R (A1, A2, …, An) 
– The set of all FDs S that hold in R

• Find:
– Compute all the keys of R

1. For every subset K of {A1, A2, …, An} compute its 
closure

2. If K+ = {A1, A2, … An} and for every attribute A, 
(K – {A})+ is not {A1, A2, … An}, then output K as 
a key

55



Students and Profs

• Suppose we have one single relation with 
attributes:
– R#
– Student Name
– ProfID (ID of professor teaching a class with the 

student)
– ProfName
– AdvisorID
– AdvisorName

56



Armstrong’s Axioms

• We can use closures of 
attributes to determine if any 
FD follows from a given set of 
FDs

• Armstrong's axioms: complete 
set of inference rules from 
which it is possible to derive 
every FD that follows from a 
given set.

57

Not the right W. W. Armstrong.  
This is Warwick Windridge
Armstrong, an Australian 
cricketer.  He did not invent these 
axioms.  They were originated by 
William Ward Armstrong, who is 
Canadian, and does not have a 
picture on Wikipedia.



Armstrong’s Axioms

• Reflexivity

– E.g. ssn name à ssn
– (always gives you a trivial FD)

• Augmentation

– E.g. ssn à name       can give you    
ssn grade à name grade

58

Y ⊆ X⇒ X→Y

X→Y ⇒ XW →YW

X, Y, and Z are sets 
of attributes.



Armstrong's Axioms

• Transitivity

e.g. if ssn à address  and address à tax-rate
then

ssn à tax-rate

59

X→Y
Y → Z

"
#
$
⇒ X→ Z

X, Y, and Z are 
sets of attributes.



Note on notation
• Relation Schema: R(A1, A2, A3): parentheses 

surround attributes, attributes separated by 
commas. 

• Set of attributes: {A1, A2, A3}: curly braces 
surround attributes, attributes separated by 
commas

• FD: A1 A2 à A3: no parentheses or curly braces, 
attributes separated by spaces, arrows separates 
left hand side and right hand side

• Set of FDs: {A1 A2 à A3, A2 à A1}: curly braces 
surround FDs, FDs separated by commas

65



Computing Closures of FDs

• Many times we are given a set of FDs and are 
interested in learning if there is a simpler set 
of FDs that has all the same implications that 
the original set does.

• To compute the closure of a set of FDs, 
repeatedly apply Armstrong’s Axioms until you 
cannot find any new FDs.

68



Examples of Computing Closures of 
FDs

• (Let us include only completely non-trivial FDs 
in these examples, with a single attribute on 
the right)

• F = {AàB, BàC}
• {F}+ = ?? 

69



Examples of Computing Closures of 
FDs

• (Let us include only completely non-trivial FDs 
in these examples, with a single attribute on 
the right)

• F = {AàB, BàC}
• {F}+ = {AàB, BàC, AàC, ACàB, ABàC}

70



Examples of Computing Closures of 
FDs

• (Let us include only completely non-trivial FDs 
in these examples, with a single attribute on 
the right)

• Suppose we have the relation R(A, B, C)

• F = {ABàC, BCàA, ACàB}

• {F}+ = ?? 

71



Examples of Computing Closures of 
FDs

• (Let us include only completely non-trivial FDs 
in these examples, with a single attribute on 
the right)

• Suppose we have the relation R(A, B, C)

• F = {ABàC, BCàA, ACàB}

• {F}+ = {ABàC, BCàA, ACàB}

72



Examples of Computing Closures of 
FDs

• (Let us include only completely non-trivial FDs 
in these examples, with a single attribute on 
the right)

• Suppose we have the relation R(A, B, C)

• F = {AàB, BàC, CàD}

• {F}+ = ?? 

73



Examples of Computing Closures of 
FDs

• (Let us include only completely non-trivial FDs 
in these examples, with a single attribute on 
the right)

• Suppose we have the relation R(A, B, C)

• F = {AàB, BàC, CàD}

• {F}+ = {AàB, BàC, CàD, AàC, AàD, BàD, 
…}

74



Closures of Attributes vs Closure of FDs
• Closure of attributes:
– Takes a set of attributes A and a set of FDs S.
– Produces a set of attributes (all the attribs that can be 

functionally determined from A, given S).
– Used for computing keys, checking if an FD follows 

from a set of FDs.
• Closure of a set of FDs:
– Takes a set of FDs.
– Produces a set of FDs (all the FDs that follow from S).
– Can be used for verifying a minimal basis, but also can 

verify by using closure of attributes.
76



Basis Set of FDs

78

• In linear algebra, a basis 
is the smallest set of 
linearly independent 
vectors such that you 
can build any other 
vector out of the basis 
vectors.



Basis Set of FDs

79

• In databases, a (minimal) 
basis for a set of FDs S is the 
smallest set of FDs that is 
equivalent to S.
– That is, all of the FDs in S 

follow from the basis set of 
FDs.



Minimal basis 

80

• Given a set of FDs S, a minimal basis for S is 
another set of FDs B where:
– All the FDs in B have singleton right sides.
– If any FD is removed from B, the result is no longer a 

basis.
– If we remove any attribute from the left side of any FD 

in B, the result is no longer a basis.
• Like in linear algebra, there can be multiple 

minimal bases for a set of FDs, though unlike in 
linear algebra, two minimal bases for a set of FDs 
may be different sizes.



Example of Minimal Basis

• R(A, B, C) is a relation such that each attribute 
functionally determines the other two 
attributes.

• What are the FDs that hold in R and what are 
the minimal bases?
– (Assume only one attribute on the right-hand side, 

only non-trivial FDs)

81



Example of Minimal Basis
• R(A, B, C) is a relation such that each attribute 

functionally determines the other two attributes
• What are the FDs that hold in R and what are the 

minimal bases?
– (Assume only one attribute on the right-hand side, 

only non-trivial FDs)
• FDs: AàB, AàC, BàA, BàC, CàA, CàB, ABàC, 

BCàA, ACàB
• Minimal Bases: {AàB, BàA, BàC, CàB},

{AàB, BàC, CàA}, etc.

84


