
Armstrong's Axioms

In these rules, assume W, X, Y, and Z are sets of attributes from a relation.

Basic Rules

1. Reflexivity: If , then X → Y.

2. Augmentation: If X → Y, then XW → YW.

3. Transitivity: If X → Y and Y → Z, then X → Z.

Other rules (technically all of these can be derived from the basic rules)

4. Splitting rule: If X → YZ, then X → Y and X → Z.

5. Combining rule: If X → Y and and X → Z, then X → YZ.

6. Augmentation on the left: If X → Y, then XW → Y.

Algorithm for closure of a set of attributes

• Suppose you have a set of attributes {A1, …, An} and a set of FDs S.
• The closure of {A1, …, An} under S is the set of attributes B such that

– every relation in S also satisfies A1…An -> B.
• Intuitive def'n: B is the largest set of attributes that we can deduce from knowing A1, …, An.
• Closure of {A1,…An} denoted by {A1,…An}+

• Hand-wavy algorithm (best kind!) ☺

– Start with the set of attributes you're taking the closure of. Call that set X.
– Look for a new FD where all the things on the left side on the FD are in X, but there's at least

one attribute on the right that's not in X.
– Add all the attributes on the right into X.
– Repeat until you can't do this anymore (you can't find another FD to make it work).

Algorithm for closure of a set of FDs

• Repeatedly apply Armstrong's axioms until you can't find any more FDs.

• Hint: Start by splitting everything so all FDs have one attribute on the left only.

• Use transitivity and augmentation a lot.

Algorithm for projecting a set of FDs

• Given a set of FDs F, a starting relation R, and a subset of attributes from R, find all the FDs that hold
using only the subset of attributes. Here we call the subset of attributes a new relation S.

• Compute closure F+. The projection is the set of all FDs in F+ that only involve attributes in S.

BCNF

• Anomalies are guaranteed not to exist when a relation is in Boyce-Codd normal form (BCNF).
• A relation R is in BCNF iff whenever there is a nontrivial FD A1…An->B1…Bm for R, {A1, …, An} is a

superkey for R.
• Informally, the left side of every nontrivial FD must be a superkey.

Checking for BCNF violations

• List all nontrivial FDs in R.
• Ensure left side of each nontrivial FD is a superkey.
• (First have to find all the keys!)

Note: a relation with two attributes is always in BCNF.

BCNF Decomposition

Algorithm: Given relation R and set of FDs F:

• Check if R is in BCNF, if not, do:
• If there are FDs that violate BCNF, call one

X -> Y. Compute X+. Let R1 = X+ and R2 = X and all other attributes not in X+.
• Compute FDs for R1 and R2 (projection algorithm for FDs).
• Check if R1 and R2 are in BCNF, and repeat if needed.

3NF

• A relation R is in 3NF iff for every nontrivial FD A1…An -> B for R, one of the following is true:
– A1…An is a superkey for R (BCNF test)
– Each B is a prime attribute (an attribute in some key for R)

3NF Decomposition

• Given a relation R and set F of functional dependencies:
1. Find a minimal basis, G, for F.
2. For each FD X -> A in G, use XA as the schema of one of the relations in the decomposition.
3. If none of the sets of schemas from Step 2 is a superkey for R, add another relation whose schema is a

key for R.

