
Armstrong's Axioms 
 
In these rules, assume W, X, Y, and Z are sets of attributes from a relation. 
 
Basic Rules 
 

1. Reflexivity: If , then X → Y. 
 

2. Augmentation: If X → Y, then XW → YW. 
 

3. Transitivity: If X → Y and Y → Z, then X → Z. 
 

Other rules (technically all of these can be derived from the basic rules) 
 

4. Splitting rule: If X → YZ, then X → Y and X → Z. 
 

5. Combining rule: If X → Y and and X → Z, then X → YZ. 
 

6. Augmentation on the left: If X → Y, then XW → Y. 
 

 
 
 
Algorithm for closure of a set of attributes 
 

• Suppose you have a set of attributes {A1, …, An} and a set of FDs S. 
• The closure of {A1, …, An} under S is the set of attributes B such that 

– every relation in S also satisfies A1…An -> B. 
• Intuitive def'n: B is the largest set of attributes that we can deduce from knowing A1, …, An. 
• Closure of {A1,…An} denoted by {A1,…An}+ 

 
• Hand-wavy algorithm (best kind!) ☺ 

– Start with the set of attributes you're taking the closure of.  Call that set X. 
– Look for a new FD where all the things on the left side on the FD are in X, but there's at least 

one attribute on the right that's not in X. 
– Add all the attributes on the right into X. 
– Repeat until you can't do this anymore (you can't find another FD to make it work). 

 

 
 
Algorithm for closure of a set of FDs 
 

• Repeatedly apply Armstrong's axioms until you can't find any more FDs. 

• Hint: Start by splitting everything so all FDs have one attribute on the left only. 

• Use transitivity and augmentation a lot. 
 

 
 



Algorithm for projecting a set of FDs 
 

• Given a set of FDs F, a starting relation R, and a subset of attributes from R, find all the FDs that hold 
using only the subset of attributes.  Here we call the subset of attributes a new relation S. 
 

• Compute closure F+.  The projection is the set of all FDs in F+ that only involve attributes in S. 
 

 
BCNF 
 

• Anomalies are guaranteed not to exist when a relation is in Boyce-Codd normal form (BCNF). 
• A relation R is in BCNF iff whenever there is a nontrivial FD A1…An->B1…Bm for R, {A1, …, An} is a 

superkey for R. 
• Informally, the left side of every nontrivial FD must be a superkey. 

 

 
Checking for BCNF violations 
 

• List all nontrivial FDs in R. 
• Ensure left side of each nontrivial FD is a superkey. 
• (First have to find all the keys!) 

 
Note: a relation with two attributes is always in BCNF. 
 

BCNF Decomposition 
 
Algorithm: Given relation R and set of FDs F: 

• Check if R is in BCNF, if not, do: 
• If there are FDs that violate BCNF, call one  

X -> Y.  Compute X+.  Let R1 = X+ and R2 = X and all other attributes not in X+.   
• Compute FDs for R1 and R2 (projection algorithm for FDs). 
• Check if R1 and R2 are in BCNF, and repeat if needed. 

 

3NF 
 

• A relation R is in 3NF iff for every nontrivial FD A1…An -> B for R, one of the following is true: 
– A1…An is a superkey for R (BCNF test) 
– Each B is a prime attribute (an attribute in some key for R) 

 

 
3NF Decomposition 
 

• Given a relation R and set F of functional dependencies: 
1. Find a minimal basis, G, for F. 
2. For each FD X -> A in G, use XA as the schema of one of the relations in the decomposition. 
3. If none of the sets of schemas from Step 2 is a superkey for R, add another relation whose schema is a 

key for R. 
 


