Constraints, Indices, B-Trees

Maintaining Integrity of Data

* You are creating a search engine for Rhodes'

website, called Rhoogle.
* You have an SQL query:

— "SELECT * FROM pages WHERE name=""+ VAR + "";"

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME

(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES LUTTLE
ROBBY TARLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
“~ YOUVE LEARNED
L TOSANMZE YOUR
DATARASE INPUTS,

Maintaining Integrity of Data

* Datais dirty.

* How does an application ensure that a database
modification does not corrupt the tables?

 Two approaches:

— Application programs check that database
modifications are consistent.

— Use the features provided by SQL.

Integrity Checking in SQL

Data type constraints (including NOT NULL).
PRIMARY KEY and UNIQUE constraints.
FOREIGN KEY constraints.

Constraints on attributes and tuples.
Triggers (schema-level constraints).

Constraints and Queries

e Often, constraints involve attributes we often
perform searches (SQL SELECTs) on.

* To speed up queries, DBs will often create
indices automatically for you.

Indexes

* Index = data structure used to speed access to
tuples of a relation, given values of one or
more attributes.

Declaring Indexes

e No standard!

* Typical syntax:

CREATE INDEX MovieIdx ON
Movie (MovieId) ;

CREATE INDEX CastsIdx ON
Casts (ActorId, MovieId):;

Types of Indexes

* Primary: index on a key
— Used to enforce constraints

* Secondary: index on non-key attribute

Using Indexes: Equality Searches

* Given a value v, the index takes us to only
those tuples that have v in the attribute(s) of

the index.
e What data structure would be useful here?

Using Indexes: Range Searches

* "Find all students with GPA > 3.0"
 What data structure(s) work here?

Range Searches

* "Find all students with GPA > 3.0"
* May be slow, even on sorted file

e Solution: Create an index file.

, k1 k2
d N\

kN

a

L\

Page 1

Page 2

Page 3

Page N

Index File

Data File

12

13

B-trees

* Extension of binary search trees to n-way
search trees (where n > 2)

* Balanced (like red-black trees)

Why B-Trees Are
So Great for DB Indexes

DBs are usually on disk, not RAM

— B-tree structure aligns with disk pages

— Hierarchical structure minimizes number of disk
reads.

Keeps info in sorted order for equality or
range searches.

Balanced tree structure gives fast searches,
insertions, deletions.

Definition

* B-tree of order d is a tree with these properties:

— Internal nodes have one more child (pointer) than
data elements (keys). Leaf nodes have no children.

— Root has between 1 and 2d data elements.
— Non-root nodes have between d and 2d elements.
— All leaves are at the same depth in the tree.

— Has extended search property (binary search tree
property extended to multiway tree)

Algorithms: Search

* Extrapolated from binary tree search
algorithm.

Algorithms: Insert

* First, find leaf node where data would go.

* |nsert(data, node):
— If data can fit in node, add it to the node.

— If causes overflow:
* split node at the median value.
* Everything less than median becomes new leaf node.
* Everything greater than median becomes new leaf node.

* Promote median to parent node; call insert(median,
parent) [may create new parent node if there is no parent]

Algorithms: Delete

e Search for item to delete
e |f at leaf node, delete the item

— Rebalance up from leaf if necessary

* |f at internal node, swap with largest child in
left sub-tree (analogous to BST deletion swap)

— Rebalance if necessary

