
Constraints, Indices, B-Trees

1

Maintaining Integrity of Data

3

• You are creating a search engine for Rhodes'
website, called Rhoogle.

• You have an SQL query:
– "SELECT * FROM pages WHERE name='" + VAR + "';"

Maintaining Integrity of Data
• Data is dirty.
• How does an application ensure that a database

modification does not corrupt the tables?

• Two approaches:
– Application programs check that database

modifications are consistent.
– Use the features provided by SQL.

4

Integrity Checking in SQL

• Data type constraints (including NOT NULL).
• PRIMARY KEY and UNIQUE constraints.
• FOREIGN KEY constraints.
• Constraints on attributes and tuples.
• Triggers (schema-level constraints).

5

Constraints and Queries

• Often, constraints involve attributes we often
perform searches (SQL SELECTs) on.

• To speed up queries, DBs will often create
indices automatically for you.

6

7

Indexes

• Index = data structure used to speed access to
tuples of a relation, given values of one or
more attributes.

8

Declaring Indexes

• No standard!
• Typical syntax:
CREATE INDEX MovieIdx ON
Movie(MovieId);

CREATE INDEX CastsIdx ON
Casts(ActorId, MovieId);

Types of Indexes

• Primary: index on a key
– Used to enforce constraints

• Secondary: index on non-key attribute

9

10

Using Indexes: Equality Searches

• Given a value v, the index takes us to only
those tuples that have v in the attribute(s) of
the index.

• What data structure would be useful here?

Using Indexes: Range Searches

• "Find all students with GPA > 3.0"
• What data structure(s) work here?

11

Range Searches

• "Find all students with GPA > 3.0"
• May be slow, even on sorted file
• Solution: Create an index file.

12

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

13

B-trees

• Extension of binary search trees to n-way
search trees (where n > 2)

• Balanced (like red-black trees)

14

Why B-Trees Are
So Great for DB Indexes

• DBs are usually on disk, not RAM
– B-tree structure aligns with disk pages
– Hierarchical structure minimizes number of disk

reads.

• Keeps info in sorted order for equality or
range searches.

• Balanced tree structure gives fast searches,
insertions, deletions.

15

Definition

• B-tree of order d is a tree with these properties:
– Internal nodes have one more child (pointer) than

data elements (keys). Leaf nodes have no children.
– Root has between 1 and 2d data elements.
– Non-root nodes have between d and 2d elements.
– All leaves are at the same depth in the tree.
– Has extended search property (binary search tree

property extended to multiway tree)

16

Algorithms: Search

• Extrapolated from binary tree search
algorithm.

17

Algorithms: Insert
• First, find leaf node where data would go.
• Insert(data, node):
– If data can fit in node, add it to the node.
– If causes overflow:

• split node at the median value.
• Everything less than median becomes new leaf node.
• Everything greater than median becomes new leaf node.
• Promote median to parent node; call insert(median,

parent) [may create new parent node if there is no parent]

18

Algorithms: Delete

• Search for item to delete
• If at leaf node, delete the item
– Rebalance up from leaf if necessary

• If at internal node, swap with largest child in
left sub-tree (analogous to BST deletion swap)
– Rebalance if necessary

19

