More notes on BCNF/3NF/4NF/MVDs

3rd Normal Form (3NF)

- A relation R is in 3NF iff for every nontrivial FD A1...An -> B for R, one of the following is true:
 - A1...An is a superkey for R (BCNF test)
 - Each B is a *prime* attribute (an attribute in *some* key for R)

3NF Decomposition

- Given a relation R and set F of functional dependencies:
- 1. Find a minimal basis, G, for F.
- 2. For each FD X -> A in G, use XA as the schema of one of the relations in the decomposition.
- 3. If none of the sets of schemas from Step 2 is a superkey for R, add another relation whose schema is a key for R.

Multivalued dependencies

- A *MVD* is a constraint that two sets of attributes are *independent* of each other.
- A MVD A1...An ->-> B1...Bm holds in R if in every instance of R:
 - for every pair of tuples t and u that agree on all the As, we can find a tuple v in R that agrees
 - with both t and u on the As
 - with t on the Bs
 - with u on all those attributes of R that are not As or Bs
- In other words, the information in A1..An determines the values of the set of tuples for B1..Bm *and* those tuples are independent of any other attributes in the relation.

Rules for MVDs

- **FD promotion:** Every FD $A \rightarrow B$ is an MVD $A \rightarrow A$
- Trivial MVDs:
- 1. If $A \rightarrow AB$, then $A \rightarrow AB$
- 2. If A1, A2..., An and B1, B2, ..., Bm make up *all* the attributes of a relation, then A1, A2, ...An $\rightarrow \rightarrow$ B1, B2, ...Bm holds in the relation
- **Transitive rule:** Given $A \rightarrow A$ and $B \rightarrow A$, we can infer $A \rightarrow A$.
- **Complementation rule:** if we know $A \rightarrow \rightarrow B$, then we know $A \rightarrow \rightarrow C$, where all the Cs are attributes not among the As or Bs.
- Note that the **splitting rule does not hold!** If $A \rightarrow \rightarrow BC$, then it is not true that $A \rightarrow \rightarrow B$ and $A \rightarrow \rightarrow C$.

4th Normal Form (4NF)

- "Stronger" than BCNF.
- A relation R is in 4NF iff:
 - for all MVDs A1...An ->-> B1...Bm,
 - {A1, ..., An} is a superkey of R.

4NF Decomposition

- Consider relation R with set of attributes X
- A1 A2 ... An $\rightarrow \rightarrow$ B1 B2 ... Bm violates 4NF
- Decompose R into two relations whose attributes are:
- 1. The As and Bs together, i.e., {A1 A2 ... An, B1, B2, ..., Bm}
- 2. All the attributes of R which are not Bs, i.e. X {B1, B2 ..., Bm}
- 3. Recursively check if the new relations are in 4NF and repeat