
NoSQL Databases

Earlier…

• We have spent most of our time with the relational DB model so far.
• There are other models:

• Key-value: a hash table
• Graph: stores graph-like structures efficiently
• Object: good for storing OO things
• Document: stores an entire “document” at a time which is usually a text-

based file with some internal structure (e.g., XML, JSON).

NoSQL

• NoSQL = “non-SQL” or “not only SQL” --- refers to anything other than
the relational model.
• Around since the 60s, but the term was not popularized until these

types of databases became extremely popular with companies like
Facebook, Amazon, and Google.
• Increasingly used in big data and real-time web applications.
• Advantages: Simpler DB designs (no schemas), simpler scaling to

clusters of machines, faster than relational in some cases.
• Disadvantages: Often no joins (low functionality), need multiple

queries to answer some questions.

• Relational Model
• store related data in tables
• require a schema which defines tables prior

to use
• encourage normalization to reduce data

redundancy
• support table JOINs to retrieve related data

from multiple tables in a single command
• implement data integrity rules
• provide transactions to guarantee two or

more updates succeed or fail as an atomic
unit

• can be scaled (with some effort)
• use a powerful declarative language for

querying
• offer plenty of support, expertise and tools.

• Document Model
• store related data in JSON-like, name-value

documents
• can store data without specifying a schema
• must usually be denormalized so

information about an item is contained in a
single document

• should not require JOINs (presuming
denormalized documents are used)

• permit any data to be saved anywhere at
anytime without verification

• guarantee updates to a single document —
but not multiple documents

• provide excellent performance and
scalability

• use JSON data objects for querying
• are a newer, exciting technology.

Scenario: Address book
• First attempt: id, title, firstname, lastname, telephone, email, address,

city, state, zipcode.
• Problem – multiple telephone numbers, addresses, emails

• Solution – Create separate tables for each of these.
• New relations: original relation is now just (id, title, first, last). Three

new relations for Telephones, Addresses, Emails.
• Problems

• Rigid schema – what if we want to add middle names, birthdays, company
name, job title, anniversary, social media accounts?

• Data is fragmented – split across multiple tables. Not easy to retrieve all of
someone’s email addresses, telephone numbers, and postal addresses at
once in an easy-to-read format.

NoSQL alternative

Scenario: Twitter

• Suppose we want to implement a relational DB to store tweets.
• The overhead of a relational DB may be overkill here --- we will rarely

need transactions, for instance.
• A failed update is unlikely to cause a global meltdown or financial

loss. We can sacrifice a little ACID for some speed.

NoSQL Twitter

MongoDB

• NoSQL document-oriented database.
• Every document is represented by JSON

• Javascript Object Notation

• Free and open-source.
• According to their website, used by Expedia, Forbes, AstraZeneca,

MetLife, Facebook, Urban Outfitters, and Comcast.

JSON

• Data interchange format, not a programming language.
• In other words, used to represent and store data, not give commands.
• Data types:

• Number (integer or float), String (double quoted), Boolean (true/false)
• Arrays: uses square bracket notation
• Objects: Uses curly bracket notation

• Spacing doesn’t matter.

JSON Example (Object)

{
“crn”: 12345
“title”: “Databases”
“department”: “Math and CS”

}

Name-value pairs. Name is quoted (must be a string). Value is quoted
if it's a string, but it can be any data type.

JSON Example (Array)

[1, “hello world”, 2.76]

JSON Example (Array of Objects)
[

{
“crn”: 12345
“title”: “Databases”
“department”: “Math and CS”

},
{

“crn”: 45897
“title”: “Discrete Structures”
“department”: “Math and CS”

}
]

MongoDB concepts

• In a RDBMS, we often think of rows of a table as individual records.
• In MongoDB (and other document-oriented DBs), records are (JSON)
documents.
• A group of documents (with presumably similar structures) is called a
collection in MongoDB.

• Table <-> Collection
• Row <-> Document
• Column <-> Field

