NoSQL Databases

Earlier...

* We have spent most of our time with the relational DB model so far.

* There are other models:
* Key-value: a hash table
* Graph: stores graph-like structures efficiently
* Object: good for storing OO things

* Document: stores an entire “document” at a time which is usually a text-
based file with some internal structure (e.g., XML, JSON).

NoSQL

* NoSQL = “non-SQL” or “not only SQL” --- refers to anything other than
the relational model.

e Around since the 60s, but the term was not popularized until these
types of databases became extremely popular with companies like
Facebook, Amazon, and Google.

* Increasingly used in big data and real-time web applications.

* Advantages: Simpler DB designs (no schemas), simpler scaling to
clusters of machines, faster than relational in some cases.

* Disadvantages: Often no joins (low functionality), need multiple
gueries to answer some questions.

Relational Model

store related data in tables

require a schema which defines tables prior
to use

encourage normalization to reduce data
redundancy

support table JOINs to retrieve related data
from multiple tables in a single command
implement data integrity rules

provide transactions to guarantee two or
more updates succeed or fail as an atomic
unit

can be scaled (with some effort)

use a powerful declarative language for
querying

offer plenty of support, expertise and tools.

Document Model

store related data in JSON-like, name-value
documents

can store data without specifying a schema
must usually be denormalized so
information about an item is contained in a
single document

should not require JOINs (presuming
denormalized documents are used)

permit any data to be saved anywhere at
anytime without verification

guarantee updates to a single document —
but not multiple documents

provide excellent performance and
scalability

use JSON data objects for querying

are a newer, exciting technology.

Scenario: Address book

* First attempt: id, title, firstname, lastname, telephone, email, address,
city, state, zipcode.

* Problem — multiple telephone numbers, addresses, emails
» Solution — Create separate tables for each of these.

* New relations: original relation is now just (id, title, first, last). Three
new relations for Telephones, Addresses, Emails.

* Problems
* Rigid schema — what if we want to add middle names, birthdays, company
name, job title, anniversary, social media accounts?

* Data is fragmented — split across multiple tables. Not easy to retrieve all of
someone’s email addresses, telephone numbers, and postal addresses at
once in an easy-to-read format.

NoSQL alternative

name: |
”Billy") ”BOb") ll:]ones"

1,

company: "Fake Goods Corp",

jobtitle: "Vice President of Data Management",

telephone: {
home: "0123456789",
mobile: "9876543210",
work: "2244668800"
1
email: {
personal: "bob@myhomeemail.net",
work: "bob@myworkemail.com"

1

address: |
home: |
linel: "10 Non-Existent Street",
city: "Nowhere",
country: "Australia”
}

1
J)

birthdate: ISODate("1980-01-01T00:00:00.000Z"),

twitter: '@bobsfakeaccount’,

note: "Don't trust this guy",

weight: "2001b",

photo: "52e86ad749e0b817d25c8892.jpg"

Scenario: Twitter

* Suppose we want to implement a relational DB to store tweets.

* The overhead of a relational DB may be overkill here --- we will rarely
need transactions, for instance.

* A failed update is unlikely to cause a global meltdown or financial
loss. We can sacrifice a little ACID for some speed.

user_id: ObjectID("65f82bdad42e7b8c76f5c1969"),

NOSQL Twitter uedate: [

{
date:

text:

}s

{
date:

text:

date:
text:

ISODate("2015-09-18T10:02:47.6202"),
"feeling more positive today"

ISODate("2015-09-17T713:14:20.789Z2"),
"spending far too much time here"

ISODate("2015-09-17T12:33:02.132Z2"),
"considering my life choices™

MongoDB . mOngO

* NoSQL document-oriented database.

* Every document is represented by JSON
* Javascript Object Notation

* Free and open-source.

* According to their website, used by Expedia, Forbes, AstraZeneca,
MetLife, Facebook, Urban Outfitters, and Comcast.

JSON

* Data interchange format, not a programming language.

* In other words, used to represent and store data, not give commands.

* Data types:

* Number (integer or float), String (double quoted), Boolean (true/false)
* Arrays: uses square bracket notation
* Objects: Uses curly bracket notation

e Spacing doesn’t matter.

JSON Example (Object)

{
“crn”: 12345
“title”: “Databases”
“department”: “Math and CS”
}

Name-value pairs. Name is quoted (must be a string). Value is quoted
if it's a string, but it can be any data type.

JSON Example (Array)

[1, “hello world”, 2.76]

JSON Example (Array of Objects)

[

“crn”: 12345
“title”: “Databases”
“department”: “Math and CS”

“crn”: 45897
“"title”: “Discrete Structures”
“department”: “Math and CS”

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
"streetAddress": "21 2nd Street”,
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"
}o
"phoneNumbers”": [{ "type": "home",

{ "type": "mobile"

1,

"children": [],

"spouse": null

"number": "212 555-1234" },

, 'number":

"123 456-7890"

}

MongoDB concepts

* In a RDBMS, we often think of rows of a table as individual records.

* In MongoDB (and other document-oriented DBs), records are (JSON)
documents.

e A group of documents (with presumably similar structures) is called a
collection in MongoDB.

* Table <-> Collection
* Row <-> Document
* Column <-> Field

