Query Optimization

Query optimization

* Given an SQL query, the query optimizer tries
to figure out the order of operations that will
make the query run the fastest.

e Possible because usually there is more than
one way to run a query.

Why query optimization?

 SQL is a declarative language.

— SQL only says what to retrieve from the DB, not
the details of how.

— Unlike most programming languages (though
there are other declarative languages).

 Good query optimization can make a big
difference.

Example

Students(R#, First, Last)
Enrolled(R#, CRN)

SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

* T (O crn=12345 (S E))

Example

e SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

[
o

>

N

Student Enrolled

Example

e SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

n TC

|
L=

Student Enrolled Student Enrolled

Canonical Form

 Make all JOINs explicit with WHERE clauses.
— S NatJoin T==S Join T WHERE...
—SJoinTON ...==S Join T WHERE...

* Perform selections and projections as early as
possible.

Relational algebra

* How do we know
T (O cru=12345 (SPE))
is equal to
TG (SPA (O cpy=12345 (E))) 72

* Yay 172 proofs!

What are the algorithms used?

e SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

7T

Join algorithms |
(later today) ------ > P

O < Selection algorithms
\(sequential scan or use index)

Student Enrolled

Query optimization steps

Parse query into internal form (e.g., parse tree)
Convert to canonical form

Generate a set of “query plans” (a particular
ordering of steps and algorithms for answering

the query)
Estimate the cost of each query plan.

Pick the best one.

Sqlite query plan demo

 EXPLAIN QUERY PLAN

 SCAN = full table scan
 SEARCH = only a subset of the rows are visited

Back to query optimization

* Projections and selections

— Perform them early (but carefully) to reduce
* number of tuples

* size of tuples (remove attributes)

— Project out (remove) all attributes except those
requested or required (e.g., needed for joins)

How does a join work?

* Three main algorithms:
— Nested loop join
— Sort-merge join
— Hash join

Nested loop join

For each tuplerin R do
For each tuplesin S do
If r and s satisfy the join condition
Then output the tuple <r,s>

Sort-Merge join

 Assume we want to join Rand S on some
attribute A.

e Sort both R and S by A.

e Perform two simultaneous linear scans of R
and S.

— Works well assuming no duplicate values of A.

Hash join

e Join Rand S on A.

* Make a hash table of the smaller relation,
mapping A to the appropriate row(s) of R (or
S).

* Scan the larger relation to find the relevant
rows using the hash table.

— Only useful if smaller relation maps A to >1 rows
of R.

Equivalence of expressions

* Natural joins:

— commutative R« S=S><R
— associative (R S)><T=Rp><1(S><T)

* How can we figure out how many possible
orderings there are to join the tables?

Equivalence of expressions

* Natural joins:

— commutative R« S=S><R
— associative (R S)><T=Rp><1(S><T)

* How can we figure out how many possible
orderings there are to join the tables?

— Each join is a binary tree.

Equivalence of expressions

* Natural joins:

— commutative R« S=S><R
— associative (R S)><T=Rp><1(S><T)

* How can we figure out how many possible
orderings there are to join the tables?
— Each join is a binary tree.

— # of binary trees with n nodes = O(4”n) = Catalan
numbers. (This only considers associativity).

Why care?

Join(C,D)

Join(B,C)

23

Picking good join orders

 Query optimizer generates a few potential
orders

— Doesn't evaluate all O(4”n) possibilities.
— Prefers deep trees over bushy trees. (Why?)

e Bushy trees require lots of extra temporary tables to
store intermediate results. A maximally-deep tree only
requires one (or maybe two) temporary tables that we
can keep overwriting.

* How many left-deep trees are there for n relations?

 Query optimizer tries to estimate the cost for
each query plan, relying on

— Statistics maintained for relations and indexes
(size of relation, size of index, number of distinct
values in columns, etc)

— Formulas to estimate selectivity of predicates (the
probability that a randomly-selected row will be
true for a predicate)

— Formulas to estimate CPU and |I/O costs of
selections, projections, joins, aggregations, etc.

