
Query Optimization

1

Query optimization

• Given an SQL query, the query optimizer tries
to figure out the order of operations that will
make the query run the fastest.

• Possible because usually there is more than
one way to run a query.

2

Why query optimization?

• SQL is a declarative language.
– SQL only says what to retrieve from the DB, not

the details of how.
– Unlike most programming languages (though

there are other declarative languages).
• Good query optimization can make a big

difference.

3

Example

• Students(R#, First, Last)
• Enrolled(R#, CRN)
• SELECT First, Last

FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

• πF,L (σ CRN=12345 (S E))

4

Example

• SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

Student Enrolled

5

Example

• SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

Student Enrolled Student Enrolled

Canonical Form

6

Canonical Form

• Make all JOINs explicit with WHERE clauses.
– S NatJoin T == S Join T WHERE…
– S Join T ON … == S Join T WHERE…

• Perform selections and projections as early as
possible.

7

8

9

Relational algebra

• How do we know
πF,L (σ CRN=12345 (S E))

is equal to
πF,L (S (σ CRN=12345 (E))) ?

• Yay 172 proofs!

10

What are the algorithms used?

• SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

Student Enrolled

Join algorithms
(later today) ------à

ß----- Selection algorithms
(sequential scan or use index)

Query optimization steps

• Parse query into internal form (e.g., parse tree)
• Convert to canonical form
• Generate a set of “query plans” (a particular

ordering of steps and algorithms for answering
the query)

• Estimate the cost of each query plan.
• Pick the best one.

13

Sqlite query plan demo

• EXPLAIN QUERY PLAN

• SCAN = full table scan
• SEARCH = only a subset of the rows are visited

14

Back to query optimization

• Projections and selections
– Perform them early (but carefully) to reduce

• number of tuples
• size of tuples (remove attributes)

– Project out (remove) all attributes except those
requested or required (e.g., needed for joins)

15

How does a join work?

• Three main algorithms:
– Nested loop join
– Sort-merge join
– Hash join

16

Nested loop join

For each tuple r in R do
For each tuple s in S do

If r and s satisfy the join condition
Then output the tuple <r,s>

17

Sort-Merge join

• Assume we want to join R and S on some
attribute A.

• Sort both R and S by A.
• Perform two simultaneous linear scans of R

and S.
– Works well assuming no duplicate values of A.

18

Hash join

• Join R and S on A.
• Make a hash table of the smaller relation,

mapping A to the appropriate row(s) of R (or
S).

• Scan the larger relation to find the relevant
rows using the hash table.
– Only useful if smaller relation maps A to >1 rows

of R.

19

Equivalence of expressions

• Natural joins:
– commutative
– associative

• How can we figure out how many possible
orderings there are to join the tables?

RSSR !"!" =
)()(TSRTSR !"!"!"!" =

20

Equivalence of expressions

• Natural joins:
– commutative
– associative

• How can we figure out how many possible
orderings there are to join the tables?
– Each join is a binary tree.

RSSR !"!" =
)()(TSRTSR !"!"!"!" =

21

Equivalence of expressions

• Natural joins:
– commutative
– associative

• How can we figure out how many possible
orderings there are to join the tables?
– Each join is a binary tree.
– # of binary trees with n nodes = O(4^n) = Catalan

numbers. (This only considers associativity).

RSSR !"!" =
)()(TSRTSR !"!"!"!" =

22

Why care?

23

Picking good join orders

• Query optimizer generates a few potential
orders
– Doesn't evaluate all O(4^n) possibilities.

– Prefers deep trees over bushy trees. (Why?)
• Bushy trees require lots of extra temporary tables to

store intermediate results. A maximally-deep tree only
requires one (or maybe two) temporary tables that we
can keep overwriting.

• How many left-deep trees are there for n relations?

24

• Query optimizer tries to estimate the cost for
each query plan, relying on
– Statistics maintained for relations and indexes

(size of relation, size of index, number of distinct
values in columns, etc)

– Formulas to estimate selectivity of predicates (the
probability that a randomly-selected row will be
true for a predicate)

– Formulas to estimate CPU and I/O costs of
selections, projections, joins, aggregations, etc.

25

